Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import time
|
| 4 |
+
from moviepy.editor import VideoFileClip
|
| 5 |
+
from faster_whisper import WhisperModel
|
| 6 |
+
|
| 7 |
+
# λΉλμ€λ₯Ό MP3λ‘ λ³ννλ ν¨μ
|
| 8 |
+
def convert_mp4_to_mp3(video_file_path, output_dir):
|
| 9 |
+
video = VideoFileClip(video_file_path)
|
| 10 |
+
audio = video.audio
|
| 11 |
+
output_path = os.path.join(output_dir, os.path.splitext(os.path.basename(video_file_path))[0] + ".mp3")
|
| 12 |
+
audio.write_audiofile(output_path)
|
| 13 |
+
audio.close()
|
| 14 |
+
video.close()
|
| 15 |
+
return output_path
|
| 16 |
+
|
| 17 |
+
# Whisper λͺ¨λΈμ μ¬μ©νμ¬ MP3 νμΌμ ν
μ€νΈλ‘ λ³ννλ ν¨μ
|
| 18 |
+
def transcribe_audio(model_size, audio_file):
|
| 19 |
+
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
| 20 |
+
start_time = time.time()
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
segments, info = model.transcribe(audio_file, beam_size=5)
|
| 24 |
+
|
| 25 |
+
detected_language = "Detected language '%s' with probability %f" % (info.language, info.language_probability)
|
| 26 |
+
result = []
|
| 27 |
+
for segment in segments:
|
| 28 |
+
result.append("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
|
| 29 |
+
result_text = "\n".join(result)
|
| 30 |
+
|
| 31 |
+
except PermissionError as e:
|
| 32 |
+
return f"PermissionError: {e}"
|
| 33 |
+
except ValueError as e:
|
| 34 |
+
return f"ValueError: {e}"
|
| 35 |
+
|
| 36 |
+
end_time = time.time()
|
| 37 |
+
elapsed_time = end_time - start_time
|
| 38 |
+
|
| 39 |
+
return f"{detected_language}\n\nTranscription:\n{result_text}\n\nElapsed time: {elapsed_time:.2f} seconds"
|
| 40 |
+
|
| 41 |
+
# Gradio μΈν°νμ΄μ€μμ μ¬μ©ν λ©μΈ ν¨μ
|
| 42 |
+
def process_video(model_size, video_file=None, video_url=None):
|
| 43 |
+
if video_url:
|
| 44 |
+
video_file_path = gr.processing_utils.download_url(video_url, dir='/tmp')
|
| 45 |
+
elif video_file:
|
| 46 |
+
video_file_path = video_file.name
|
| 47 |
+
else:
|
| 48 |
+
return "Please upload a video file or provide a video URL."
|
| 49 |
+
|
| 50 |
+
save_path = "/tmp"
|
| 51 |
+
mp3_file_path = convert_mp4_to_mp3(video_file_path, save_path)
|
| 52 |
+
transcription = transcribe_audio(model_size, mp3_file_path)
|
| 53 |
+
return transcription
|
| 54 |
+
|
| 55 |
+
# Gradio μΈν°νμ΄μ€ μ μ
|
| 56 |
+
iface = gr.Interface(
|
| 57 |
+
fn=process_video,
|
| 58 |
+
inputs=[
|
| 59 |
+
gr.Dropdown(["tiny", "base", "small", "medium", "large"], label="Model Size"),
|
| 60 |
+
gr.File(label="Upload Video File", optional=True),
|
| 61 |
+
gr.Textbox(label="Video URL", optional=True)
|
| 62 |
+
],
|
| 63 |
+
outputs="text",
|
| 64 |
+
title="Video to Text Converter using Whisper",
|
| 65 |
+
description="Upload a video file or provide a video URL, select the Whisper model size, and get the transcribed text."
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
if __name__ == "__main__":
|
| 69 |
+
iface.launch()
|