Spaces:
Running
Running
File size: 10,065 Bytes
0ed8b3a 45e7011 0ed8b3a 3e05990 0ed8b3a 7ccb57f 0ed8b3a 45e7011 0ed8b3a 32ac9a4 0ed8b3a 45e7011 0ed8b3a d0ba3db 0ed8b3a 45e7011 0ed8b3a 32ac9a4 0ed8b3a 45e7011 0ed8b3a 32ac9a4 0ed8b3a b90f26c 0ed8b3a dd9e6a9 0ed8b3a 7ccb57f 0ed8b3a 7ccb57f 0ed8b3a 7ccb57f 0ed8b3a 7ccb57f 0ed8b3a 7ccb57f 0ed8b3a 7ccb57f 0ed8b3a 3e05990 53f2712 9e44773 3e05990 7ccb57f 32ac9a4 45e7011 7ccb57f 86e97fb 7ccb57f 0ed8b3a 45e7011 32ac9a4 0ed8b3a 45e7011 0ed8b3a 45e7011 0ed8b3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import json
import os
import pandas as pd
import requests
import streamlit as st
from config import DEFAULT_ICON, SEASON
from login_component import is_token_in_session
from shared_page import common_page_config
from streamlit_filter import filter_dataframe
HARDCODED_KEEPERS_YAHOO_ID = {
2025: [
"40908",
"40168",
"30971",
"40899",
"40883",
"40993",
"32703",
"40196",
"40878",
"40881",
"40875",
"40118",
"33967",
"34007",
"31840",
"41048",
"30259",
"40063",
"40889",
"40059",
"31833",
"40905",
"40890",
"40877",
"33399",
"32685",
"40896",
"40041",
"33514",
"30994",
"34120",
"40084",
"34010",
]
}
@st.cache_data(ttl=60 * 60 * 24)
def load_yahoo_to_fp_id_map() -> dict[str, str]:
df = pd.read_csv(r"https://raw.githubusercontent.com/dynastyprocess/data/master/files/db_playerids.csv")
for id_col in ["yahoo_id", "fantasypros_id"]:
df[id_col] = df[id_col].fillna(-9999).apply(lambda x: str(int(x)))
player_id_dict = df.set_index("yahoo_id")["fantasypros_id"].to_dict()
# map team DST
player_id_dict.update(
{
"100022": "8000", # Arizona
"100001": "8010", # Atlanta
"100033": "8020", # Baltimore
"100002": "8030", # Buffalo
"100029": "8040", # Carolina
"100003": "8050", # Chicago
"100004": "8060", # Cincinnati
"100005": "8070", # Cleveland
"100006": "8080", # Dallas
"100007": "8090", # Denver
"100008": "8100", # Detroit
"100009": "8110", # Green Bay
"100034": "8120", # Houston
"100011": "8130", # Indianapolis
"100030": "8140", # Jacksonville
"100012": "8150", # Kansas City
"100013": "8220", # Las Vegas
"100014": "8280", # Los Angeles Rams
"100024": "8250", # Los Angeles Chargers
"100015": "8160", # Miami
"100016": "8170", # Minnesota
"100017": "8180", # New England
"100018": "8190", # New Orleans
"100019": "8200", # New York Giants
"100020": "8210", # New York Jets
"100021": "8230", # Philadelphia
"100023": "8240", # Pittsburgh
"100025": "8270", # San Francisco
"100026": "8260", # Seattle
"100027": "8290", # Tampa Bay
"100010": "8300", # Tennessee
"100028": "8310", # Washington
}
)
return player_id_dict
def load_depth_charts():
df = pd.read_csv(os.path.join(os.path.dirname(__file__), "../../tests/mocks/2024 Depth Charts - formatted.csv"))
df["yahoo_id"] = df["yahoo_id"].apply(lambda x: str(int(x)))
df["fp_id"] = df["yahoo_id"].apply(lambda x: load_yahoo_to_fp_id_map().get(x, x))
return df
def extract_ecr_var_data(request_text_str, var_name: str):
start_str = f"""var {var_name} = """
end_str = """};"""
end_offset = 1 # include closing bracket
start_slice_pos = request_text_str.find(start_str) + len(start_str)
first_slice = request_text_str[start_slice_pos:]
end_slice_pos = first_slice.find(end_str) + end_offset
dom_str = first_slice[:end_slice_pos]
var_json = json.loads(dom_str)
return var_json
@st.cache_data(ttl=60 * 60 * 24)
def load_ecr_data():
request_text = get_ecr_request_text()
ecr_data = extract_ecr_var_data(request_text, "ecrData")
ecr_columns = [
"player_id",
"player_name",
"player_position_id",
"player_team_id",
"player_bye_week",
"rank_ecr",
"pos_rank",
"tier",
]
df_ecr = pd.DataFrame(ecr_data["players"])[ecr_columns]
df_ecr["rank_ecr"] = df_ecr["rank_ecr"].astype(int)
df_ecr["player_id"] = df_ecr["player_id"].apply(lambda x: str(int(x)))
# sos_data = extract_ecr_var_data(request_text, "sosData")
# adp_data = extract_ecr_var_data(request_text, "adpData")
return df_ecr
@st.cache_data(ttl=60 * 60 * 24)
def get_ecr_request_text():
r = requests.get("https://www.fantasypros.com/nfl/rankings/half-point-ppr-cheatsheets.php")
return r.text
@st.cache_resource(ttl=60 * 60 * 24)
def get_league_settings_with_cache(selected_league):
return st.session_state.yahoo_client.parse_league_settings(selected_league)
def highlight_drafted(data_row_series):
return ["background-color: salmon" if data_row_series.is_drafted else "" for _ in range(len(data_row_series))]
def display_formatted_tiers(df):
st.dataframe(
df.sort_values("rank_ecr").style.apply(highlight_drafted, axis=1),
hide_index=True,
height=35 * (len(df) + 1) + 5,
column_order=[
"rank_ecr",
"player_name",
# "player_position_id",
"player_bye_week",
# "tier",
# "is_drafted",
"player_team_id",
],
column_config={
"player_name": st.column_config.TextColumn(label="", help="Player's name"),
"player_position_id": st.column_config.TextColumn(label="", help="Player's position"),
"player_bye_week": st.column_config.NumberColumn(label="Bye", help="Player's Bye Week"),
"rank_ecr": st.column_config.NumberColumn(label="Rank", help="Player ECR Rank"),
"tier": st.column_config.NumberColumn(label="Tier", help="Player Tier"),
"is_drafted": st.column_config.CheckboxColumn(label="Drafted", help="Has been drafted"),
"player_team_id": st.column_config.TextColumn(label="Tm"),
},
use_container_width=True,
)
def get_page():
page_title = "Yahoo Draft Live Summary"
st.set_page_config(page_title=page_title, page_icon=DEFAULT_ICON, layout="wide")
common_page_config()
st.title(page_title)
if not (is_token_in_session() and st.session_state.get("user_admin")):
st.write("Exclusive feature")
else:
selected_season = st.selectbox("Select Season", list(range(SEASON, 2012, -1)))
user_leagues = st.session_state.yahoo_client.find_all_leagues_for_logged_in_user(season=selected_season)
selected_league = st.selectbox("Select league", user_leagues)
league_settings = get_league_settings_with_cache(selected_league)
st.header(f"{league_settings.name} - {league_settings.season}")
with st.expander("Show Positions"):
st.dataframe(
pd.DataFrame(league_settings.roster_positions).set_index("position")["count"],
)
draft_result = st.session_state.yahoo_client.get_draft(selected_league)
if st.button("Load / Refresh"):
draft_result = st.session_state.yahoo_client.get_draft(selected_league)
if "player_key" in draft_result:
draft_result["player_id"] = draft_result["player_key"].apply(lambda x: x.rsplit(".", 1)[-1] if x else x)
else:
draft_result["player_id"] = ""
draft_result["fp_id"] = draft_result["player_id"].apply(lambda x: load_yahoo_to_fp_id_map().get(x, x))
ecr_data = load_ecr_data()
draft_result_merge_cols = [
"fp_id",
"team_key",
"round",
"pick",
]
for col in draft_result_merge_cols:
if col not in draft_result:
draft_result[col] = ""
ecr_with_draft = ecr_data.merge(
draft_result[draft_result_merge_cols], how="outer", left_on="player_id", right_on="fp_id"
)
keepers_fp_id_list = [load_yahoo_to_fp_id_map().get(x, x) for x in HARDCODED_KEEPERS_YAHOO_ID.get(SEASON, [])]
ecr_with_draft["is_drafted"] = ecr_with_draft["fp_id"].notna() | ecr_with_draft["player_id"].isin(
keepers_fp_id_list
)
# depth_charts = load_depth_charts()
# ecr_with_draft = ecr_with_draft.merge(depth_charts, how="left", left_on="player_id", right_on="fp_id")
if ("round" in ecr_with_draft) and ("pick" in ecr_with_draft):
draft_picks_only = ecr_with_draft[ecr_with_draft.is_drafted].sort_values(["round", "pick"])
with st.expander("Show Draft Results"):
pos_pivot_df = draft_picks_only.pivot_table(
values="player_id", columns="player_position_id", index="team_key", aggfunc="count", margins=True
)
st.dataframe(pos_pivot_df, use_container_width=True)
if st.checkbox("Full Results"):
st.dataframe(draft_picks_only)
with st.expander("Unmatched"):
st.dataframe(ecr_with_draft[ecr_with_draft.player_name.isna()])
st.header("ECR Tiers")
with st.expander("Filters"):
filtered_data = filter_dataframe(
ecr_with_draft,
force_on=True,
force_on_columns=["is_drafted", "player_position_id", "player_team_id"],
)
position_list = [
x for x in ["QB", "RB", "WR", "TE", "DST", "K"] if x in filtered_data.player_position_id.unique()
]
if not st.checkbox("Show DST/K"):
position_list = [x for x in position_list if x not in ["DST", "K"]]
if st.checkbox("Show Overall"):
position_list = ["OVERALL"]
columns_list = st.columns(len(position_list))
for pos, col in zip(position_list, columns_list):
with col:
st.header(pos)
if pos == "OVERALL":
df_pos = filtered_data
else:
df_pos = filtered_data[filtered_data.player_position_id == pos]
for tier, df_tier in df_pos.groupby("tier"):
st.header(f"Tier {tier}")
display_formatted_tiers(df_tier)
if __name__ == "__main__":
get_page()
|