Spaces:
Running
Running
Jon Solow
commited on
Commit
·
91793e3
1
Parent(s):
77fb55b
Add footballguys queries and Targets page
Browse files
src/pages/5_Targets.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datetime
|
| 2 |
+
import streamlit as st
|
| 3 |
+
|
| 4 |
+
from config import DEFAULT_ICON
|
| 5 |
+
from shared_page import common_page_config
|
| 6 |
+
|
| 7 |
+
from queries.footballguys.constants import YEAR
|
| 8 |
+
from queries.footballguys.refresh import request_stat
|
| 9 |
+
from streamlit_filter import filter_dataframe
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@st.cache_data(ttl=60 * 60 * 1)
|
| 13 |
+
def load_data():
|
| 14 |
+
stat_name = "targets"
|
| 15 |
+
data = request_stat(stat_name)
|
| 16 |
+
data_load_time_str = datetime.datetime.utcnow().strftime("%m/%d/%Y %I:%M %p")
|
| 17 |
+
return data, data_load_time_str
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def get_page():
|
| 21 |
+
page_title = f"Team Practice Reports - {YEAR}"
|
| 22 |
+
st.set_page_config(page_title=page_title, page_icon=DEFAULT_ICON, layout="wide")
|
| 23 |
+
common_page_config()
|
| 24 |
+
st.title(page_title)
|
| 25 |
+
if st.button("Refresh Data"):
|
| 26 |
+
st.cache_data.clear()
|
| 27 |
+
data, data_load_time_str = load_data()
|
| 28 |
+
st.write(f"Data loaded as of: {data_load_time_str} UTC")
|
| 29 |
+
|
| 30 |
+
with st.container():
|
| 31 |
+
filtered_data = filter_dataframe(data)
|
| 32 |
+
st.dataframe(
|
| 33 |
+
filtered_data,
|
| 34 |
+
hide_index=True,
|
| 35 |
+
height=35 * (len(filtered_data) + 1) + 12,
|
| 36 |
+
use_container_width=False,
|
| 37 |
+
column_config={},
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
if __name__ == "__main__":
|
| 42 |
+
get_page()
|
src/queries/footballguys/__init__.py
ADDED
|
File without changes
|
src/queries/footballguys/constants.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Mapping
|
| 2 |
+
|
| 3 |
+
# constants relevant to parsing from footballguys
|
| 4 |
+
|
| 5 |
+
SNAP_PAGE_POSITON_ORDER: List[str] = [
|
| 6 |
+
"QB",
|
| 7 |
+
"RB",
|
| 8 |
+
"WR",
|
| 9 |
+
"TE",
|
| 10 |
+
"DT",
|
| 11 |
+
"DE",
|
| 12 |
+
"ILB",
|
| 13 |
+
"OLB",
|
| 14 |
+
"CB",
|
| 15 |
+
"S",
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
POSITIONS_TO_OFFENSE_DEFENSE: Mapping[str, str] = {
|
| 19 |
+
"QB": "OFF",
|
| 20 |
+
"RB": "OFF",
|
| 21 |
+
"WR": "OFF",
|
| 22 |
+
"TE": "OFF",
|
| 23 |
+
"DT": "DEF",
|
| 24 |
+
"DE": "DEF",
|
| 25 |
+
"ILB": "DEF",
|
| 26 |
+
"OLB": "DEF",
|
| 27 |
+
"S": "DEF",
|
| 28 |
+
"CB": "DEF",
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
BASE_URL = "https://www.footballguys.com/stats"
|
| 33 |
+
|
| 34 |
+
YEAR = 2023
|
src/queries/footballguys/helpers.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import lxml.html
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import requests
|
| 4 |
+
from typing import List
|
| 5 |
+
from queries.footballguys import constants as fbgc
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def url_to_pandas(url) -> List[pd.DataFrame]:
|
| 9 |
+
page = requests.get(url)
|
| 10 |
+
table = pd.read_html(page.text.replace("<br>", "-"))
|
| 11 |
+
return table
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def create_html_table_from_header_body(header_html_str: str, body_html_str: str):
|
| 15 |
+
return f"""
|
| 16 |
+
<table>
|
| 17 |
+
{header_html_str}
|
| 18 |
+
{body_html_str}
|
| 19 |
+
</table>
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def extract_snaps_to_pandas(url: str):
|
| 24 |
+
root = lxml.html.document_fromstring(requests.get(url).text)
|
| 25 |
+
table_element_list = root.xpath("""//*[@id="stats_snapcounts_data"]/div/table""")
|
| 26 |
+
assert isinstance(table_element_list, list)
|
| 27 |
+
table_element = table_element_list[0]
|
| 28 |
+
assert isinstance(table_element, lxml.html.HtmlElement)
|
| 29 |
+
table_child_list = table_element.getchildren()
|
| 30 |
+
assert len(table_child_list) % 2 == 0 # check is even
|
| 31 |
+
half_len = int(len(table_child_list) / 2)
|
| 32 |
+
df_list = []
|
| 33 |
+
for i in range(half_len):
|
| 34 |
+
table_html = create_html_table_from_header_body(
|
| 35 |
+
lxml.html.tostring(table_child_list[2 * i]), lxml.html.tostring(table_child_list[2 * i + 1])
|
| 36 |
+
).replace("\\n", "")
|
| 37 |
+
df = pd.read_html(table_html)[0]
|
| 38 |
+
# First column contains name and is initially labeled as each position, example "Quarterback"
|
| 39 |
+
# Insert column at front called POS and fill with current first column label
|
| 40 |
+
position_name = df.columns[0]
|
| 41 |
+
df.insert(0, "POS", position_name)
|
| 42 |
+
df.rename(columns={position_name: "name"}, inplace=True)
|
| 43 |
+
df_list.append(df)
|
| 44 |
+
return df_list
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def add_snap_off_def_column(team_snap_df: pd.DataFrame):
|
| 48 |
+
off_def = team_snap_df["POS"].apply(lambda x: fbgc.POSITIONS_TO_OFFENSE_DEFENSE[x])
|
| 49 |
+
team_snap_df.insert(0, "OFF/DEF", off_def)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def add_snap_position_column(
|
| 53 |
+
team_snap_df_list: List[pd.DataFrame],
|
| 54 |
+
position_name_array: List[str] = fbgc.SNAP_PAGE_POSITON_ORDER,
|
| 55 |
+
):
|
| 56 |
+
# blank player names between positions, so we can use cumsum
|
| 57 |
+
# 8/22/23 - We are currently failing here because snap counts are incorrectly not split by position atm
|
| 58 |
+
assert len(team_snap_df_list) == len(position_name_array)
|
| 59 |
+
for pos_idx, pos_df in enumerate(team_snap_df_list):
|
| 60 |
+
pos_df.insert(0, "POS", position_name_array[pos_idx])
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def set_multilevel_columns(df):
|
| 64 |
+
new_cols = [tuple(x.split("-")) if "-" in x else (x, x) for x in df.columns]
|
| 65 |
+
df.columns = pd.MultiIndex.from_tuples(new_cols)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def parse_snaps(team_short_name: str, base_url: str = fbgc.BASE_URL, year: int = fbgc.YEAR) -> pd.DataFrame:
|
| 69 |
+
print(f"Attempting to parse snaps for {team_short_name}")
|
| 70 |
+
team_snap_df_list = parse_team_page(team_short_name, base_url, "snap-counts", year)
|
| 71 |
+
team_snap_df = pd.concat(team_snap_df_list)
|
| 72 |
+
# add_snap_off_def_column(team_snap_df)
|
| 73 |
+
split_snap_count_percents(team_snap_df)
|
| 74 |
+
team_snap_df.dropna(subset=["name"], inplace=True)
|
| 75 |
+
# set_multilevel_columns(team_snap_df)
|
| 76 |
+
return team_snap_df
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def add_targets_position(team_df: pd.DataFrame):
|
| 80 |
+
# fill blanks up by reversing index, fill down, and re-reversing
|
| 81 |
+
positions = team_df.name.apply(lambda x: x.replace(" Totals", "") if " Totals" in x else None)[::-1].fillna(
|
| 82 |
+
method="ffill"
|
| 83 |
+
)[::-1]
|
| 84 |
+
team_df.insert(0, "POS", positions)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def parse_targets(team_short_name: str, base_url: str = fbgc.BASE_URL, year: int = fbgc.YEAR) -> pd.DataFrame:
|
| 88 |
+
# snaps are index 2
|
| 89 |
+
print(f"Attempting to parse targets for {team_short_name}")
|
| 90 |
+
team_df = parse_team_page(team_short_name, base_url, "targets", year)[0]
|
| 91 |
+
add_targets_position(team_df)
|
| 92 |
+
return team_df[team_df.name.notna()]
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_redzone(team_short_name: str, base_url: str = fbgc.BASE_URL, year: int = fbgc.YEAR) -> pd.DataFrame:
|
| 96 |
+
# snaps are index 3
|
| 97 |
+
print(f"Attempting to parse redzone for {team_short_name}")
|
| 98 |
+
team_df = parse_team_page(team_short_name, base_url, "redzone", year)[0]
|
| 99 |
+
add_targets_position(team_df)
|
| 100 |
+
return team_df[team_df.name.notna()]
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def split_snap_count_percents(team_snap_df: pd.DataFrame):
|
| 104 |
+
for week in range(1, 18):
|
| 105 |
+
if f"Wk {week}" not in team_snap_df.columns:
|
| 106 |
+
continue
|
| 107 |
+
# if values are all NaN column will be dtype float 64 and should skip
|
| 108 |
+
if team_snap_df[f"Wk {week}"].dtype == float:
|
| 109 |
+
team_snap_df[f"{week}-count"] = 0
|
| 110 |
+
team_snap_df[f"{week}-%"] = 0.0
|
| 111 |
+
else:
|
| 112 |
+
week_split = team_snap_df[f"Wk {week}"].astype(str).str.split("-")
|
| 113 |
+
week_count = week_split.apply(lambda x: 0 if len(x) == 1 or x[0] == "" else int(x[0]))
|
| 114 |
+
week_pct = week_split.apply(lambda x: 0.0 if len(x) == 1 else float(x[1].strip("%")) / 100.0)
|
| 115 |
+
team_snap_df[f"{week}-count"] = week_count
|
| 116 |
+
team_snap_df[f"{week}-%"] = week_pct
|
| 117 |
+
team_snap_df.drop(columns=f"Wk {week}", inplace=True)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def parse_team_page(
|
| 121 |
+
team_short_name: str,
|
| 122 |
+
base_url: str,
|
| 123 |
+
stat_name: str,
|
| 124 |
+
year: int,
|
| 125 |
+
) -> List[pd.DataFrame]:
|
| 126 |
+
url = f"{base_url}/{stat_name}/teams?team={team_short_name}&year={year}"
|
| 127 |
+
if stat_name == "snap-counts":
|
| 128 |
+
all_tables = extract_snaps_to_pandas(url)
|
| 129 |
+
else:
|
| 130 |
+
all_tables = url_to_pandas(url)
|
| 131 |
+
return all_tables
|
src/queries/footballguys/refresh.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from domain.teams import NFLTeam, ALL_TEAMS
|
| 2 |
+
from queries.footballguys.helpers import parse_snaps, parse_targets, parse_redzone
|
| 3 |
+
from typing import List, Callable, Optional
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def add_team_name_columns(team_df: pd.DataFrame, team_short_name: str, team_name: str):
|
| 8 |
+
team_df.insert(0, "TEAM", team_short_name)
|
| 9 |
+
team_df.insert(1, "TEAM_NAME", team_name)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def apply_intended_column_sorting(df: pd.DataFrame, first_columns: List[str]) -> pd.DataFrame:
|
| 13 |
+
first_columns_in_df = [col for col in first_columns if col in df.columns]
|
| 14 |
+
remaining_columns = [col for col in df.columns if col not in first_columns_in_df]
|
| 15 |
+
return df[first_columns_in_df + remaining_columns]
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def get_all_teams_stat_type(
|
| 19 |
+
all_teams_list: List[NFLTeam],
|
| 20 |
+
parsing_function: Callable,
|
| 21 |
+
store_key: str,
|
| 22 |
+
intended_first_columns: Optional[List[str]] = None,
|
| 23 |
+
):
|
| 24 |
+
team_df_list = []
|
| 25 |
+
for team in all_teams_list:
|
| 26 |
+
team_df = parsing_function(team.footballguys_short_name)
|
| 27 |
+
add_team_name_columns(team_df, team.team_short_name, team.team_name)
|
| 28 |
+
team_df_list.append(team_df)
|
| 29 |
+
df = pd.concat(team_df_list)
|
| 30 |
+
if intended_first_columns:
|
| 31 |
+
df = apply_intended_column_sorting(df, intended_first_columns)
|
| 32 |
+
print(f"footballguy {store_key} loaded")
|
| 33 |
+
return df
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def request_stat(stat_name: str) -> pd.DataFrame:
|
| 37 |
+
intended_col_sort = None
|
| 38 |
+
if stat_name == "targets":
|
| 39 |
+
parse_fxn = parse_targets
|
| 40 |
+
intended_col_sort = ["TEAM", "TEAM_NAME", "POS", "name", "total"]
|
| 41 |
+
elif stat_name == "snap-counts":
|
| 42 |
+
parse_fxn = parse_snaps
|
| 43 |
+
elif stat_name == "redzone":
|
| 44 |
+
parse_fxn = parse_redzone
|
| 45 |
+
intended_col_sort = ["TEAM", "TEAM_NAME", "POS", "name", "total"]
|
| 46 |
+
return get_all_teams_stat_type(ALL_TEAMS, parse_fxn, stat_name, intended_col_sort)
|