Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from langgraph.graph import StateGraph
|
| 3 |
+
from typing import TypedDict, Annotated, List, Dict
|
| 4 |
+
from langgraph.graph.message import add_messages
|
| 5 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
| 6 |
+
import json
|
| 7 |
+
import requests
|
| 8 |
+
import os
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
import time
|
| 11 |
+
|
| 12 |
+
# Load environment variables
|
| 13 |
+
load_dotenv()
|
| 14 |
+
|
| 15 |
+
# Define the state structure
|
| 16 |
+
class State(TypedDict):
|
| 17 |
+
messages: Annotated[list[SystemMessage | HumanMessage | AIMessage], add_messages]
|
| 18 |
+
current_step: str
|
| 19 |
+
code: str
|
| 20 |
+
style_analysis: Dict
|
| 21 |
+
security_analysis: Dict
|
| 22 |
+
performance_analysis: Dict
|
| 23 |
+
architecture_analysis: Dict
|
| 24 |
+
final_recommendations: Dict
|
| 25 |
+
|
| 26 |
+
def call_huggingface_api(prompt: str, max_retries=3) -> Dict:
|
| 27 |
+
"""Call Hugging Face API with retry logic and proper error handling."""
|
| 28 |
+
api_key = os.getenv("HUGGINGFACE_API_KEY")
|
| 29 |
+
if not api_key:
|
| 30 |
+
raise ValueError("HUGGINGFACE_API_KEY not found in environment variables")
|
| 31 |
+
|
| 32 |
+
# You can change this to any model you prefer
|
| 33 |
+
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 34 |
+
headers = {"Authorization": f"Bearer {api_key}"}
|
| 35 |
+
|
| 36 |
+
for attempt in range(max_retries):
|
| 37 |
+
try:
|
| 38 |
+
response = requests.post(
|
| 39 |
+
API_URL,
|
| 40 |
+
headers=headers,
|
| 41 |
+
json={
|
| 42 |
+
"inputs": prompt,
|
| 43 |
+
"parameters": {
|
| 44 |
+
"max_new_tokens": 1000,
|
| 45 |
+
"temperature": 0.7,
|
| 46 |
+
"top_p": 0.95,
|
| 47 |
+
"return_full_text": False
|
| 48 |
+
}
|
| 49 |
+
}
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
if response.status_code == 200:
|
| 53 |
+
result = response.json()
|
| 54 |
+
if isinstance(result, list) and len(result) > 0:
|
| 55 |
+
# Extract the generated text
|
| 56 |
+
text = result[0].get('generated_text', '')
|
| 57 |
+
# Try to parse as JSON if it contains JSON
|
| 58 |
+
try:
|
| 59 |
+
# Find JSON content between triple backticks if present
|
| 60 |
+
if "```json" in text:
|
| 61 |
+
json_str = text.split("```json")[1].split("```")[0].strip()
|
| 62 |
+
else:
|
| 63 |
+
json_str = text.strip()
|
| 64 |
+
return json.loads(json_str)
|
| 65 |
+
except json.JSONDecodeError:
|
| 66 |
+
return {"error": "Failed to parse JSON from response", "raw_text": text}
|
| 67 |
+
|
| 68 |
+
# If model is loading, wait and retry
|
| 69 |
+
if response.status_code == 503:
|
| 70 |
+
wait_time = 2 ** attempt
|
| 71 |
+
time.sleep(wait_time)
|
| 72 |
+
continue
|
| 73 |
+
|
| 74 |
+
except Exception as e:
|
| 75 |
+
if attempt == max_retries - 1:
|
| 76 |
+
return {"error": f"API call failed: {str(e)}"}
|
| 77 |
+
time.sleep(2 ** attempt)
|
| 78 |
+
|
| 79 |
+
return {"error": "Maximum retries reached"}
|
| 80 |
+
|
| 81 |
+
def analyze_code_style(state: State) -> dict:
|
| 82 |
+
"""Analyze code style and best practices."""
|
| 83 |
+
code = state["code"]
|
| 84 |
+
prompt = f"""You are a senior code reviewer focused on code style and best practices. Analyze this code:
|
| 85 |
+
|
| 86 |
+
{code}
|
| 87 |
+
|
| 88 |
+
Focus on:
|
| 89 |
+
1. Code readability and clarity
|
| 90 |
+
2. Adherence to common style guides
|
| 91 |
+
3. Variable/function naming
|
| 92 |
+
4. Code organization
|
| 93 |
+
5. Documentation quality
|
| 94 |
+
|
| 95 |
+
Provide your response in JSON format with these exact keys:
|
| 96 |
+
{{
|
| 97 |
+
"issues": ["list of identified style issues"],
|
| 98 |
+
"suggestions": ["list of improvement suggestions"],
|
| 99 |
+
"overall_rating": "1-10 score as a number",
|
| 100 |
+
"primary_concerns": ["list of main style concerns"]
|
| 101 |
+
}}"""
|
| 102 |
+
|
| 103 |
+
analysis = call_huggingface_api(prompt)
|
| 104 |
+
if "error" in analysis:
|
| 105 |
+
analysis = {
|
| 106 |
+
"issues": ["Error analyzing code style"],
|
| 107 |
+
"suggestions": ["Try again later"],
|
| 108 |
+
"overall_rating": 0,
|
| 109 |
+
"primary_concerns": ["Analysis failed"]
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
messages = state["messages"] + [AIMessage(content="Completed code style analysis")]
|
| 113 |
+
return {**state, "messages": messages, "style_analysis": analysis, "current_step": "security"}
|
| 114 |
+
|
| 115 |
+
def analyze_security(state: State) -> dict:
|
| 116 |
+
"""Analyze security vulnerabilities."""
|
| 117 |
+
code = state["code"]
|
| 118 |
+
prompt = f"""You are a security expert. Analyze this code for security vulnerabilities:
|
| 119 |
+
|
| 120 |
+
{code}
|
| 121 |
+
|
| 122 |
+
Focus on:
|
| 123 |
+
1. Input validation
|
| 124 |
+
2. Authentication/Authorization
|
| 125 |
+
3. Data exposure
|
| 126 |
+
4. Common vulnerabilities
|
| 127 |
+
5. Security best practices
|
| 128 |
+
|
| 129 |
+
Provide your response in JSON format with these exact keys:
|
| 130 |
+
{{
|
| 131 |
+
"vulnerabilities": ["list of potential security issues"],
|
| 132 |
+
"risk_levels": {{"vulnerability": "risk level"}},
|
| 133 |
+
"recommendations": ["list of security improvements"],
|
| 134 |
+
"overall_security_score": "1-10 score as a number"
|
| 135 |
+
}}"""
|
| 136 |
+
|
| 137 |
+
analysis = call_huggingface_api(prompt)
|
| 138 |
+
if "error" in analysis:
|
| 139 |
+
analysis = {
|
| 140 |
+
"vulnerabilities": ["Error analyzing security"],
|
| 141 |
+
"risk_levels": {"Error": "High"},
|
| 142 |
+
"recommendations": ["Try again later"],
|
| 143 |
+
"overall_security_score": 0
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
messages = state["messages"] + [AIMessage(content="Completed security analysis")]
|
| 147 |
+
return {**state, "messages": messages, "security_analysis": analysis, "current_step": "performance"}
|
| 148 |
+
|
| 149 |
+
def analyze_performance(state: State) -> dict:
|
| 150 |
+
"""Analyze code performance."""
|
| 151 |
+
code = state["code"]
|
| 152 |
+
prompt = f"""You are a performance optimization expert. Analyze this code for performance issues:
|
| 153 |
+
|
| 154 |
+
{code}
|
| 155 |
+
|
| 156 |
+
Focus on:
|
| 157 |
+
1. Time complexity
|
| 158 |
+
2. Space complexity
|
| 159 |
+
3. Resource usage
|
| 160 |
+
4. Bottlenecks
|
| 161 |
+
5. Optimization opportunities
|
| 162 |
+
|
| 163 |
+
Provide your response in JSON format with these exact keys:
|
| 164 |
+
{{
|
| 165 |
+
"bottlenecks": ["list of identified performance bottlenecks"],
|
| 166 |
+
"complexity_analysis": {{
|
| 167 |
+
"time_complexity": "Big O notation",
|
| 168 |
+
"space_complexity": "Big O notation",
|
| 169 |
+
"critical_sections": ["list of critical sections"]
|
| 170 |
+
}},
|
| 171 |
+
"optimization_suggestions": ["list of performance improvements"],
|
| 172 |
+
"performance_score": "1-10 score as a number"
|
| 173 |
+
}}"""
|
| 174 |
+
|
| 175 |
+
analysis = call_huggingface_api(prompt)
|
| 176 |
+
if "error" in analysis:
|
| 177 |
+
analysis = {
|
| 178 |
+
"bottlenecks": ["Error analyzing performance"],
|
| 179 |
+
"complexity_analysis": {
|
| 180 |
+
"time_complexity": "Unknown",
|
| 181 |
+
"space_complexity": "Unknown",
|
| 182 |
+
"critical_sections": []
|
| 183 |
+
},
|
| 184 |
+
"optimization_suggestions": ["Try again later"],
|
| 185 |
+
"performance_score": 0
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
messages = state["messages"] + [AIMessage(content="Completed performance analysis")]
|
| 189 |
+
return {**state, "messages": messages, "performance_analysis": analysis, "current_step": "architecture"}
|
| 190 |
+
|
| 191 |
+
def analyze_architecture(state: State) -> dict:
|
| 192 |
+
"""Analyze code architecture patterns."""
|
| 193 |
+
code = state["code"]
|
| 194 |
+
prompt = f"""You are a software architect. Analyze this code's architectural patterns:
|
| 195 |
+
|
| 196 |
+
{code}
|
| 197 |
+
|
| 198 |
+
Focus on:
|
| 199 |
+
1. Design patterns used
|
| 200 |
+
2. Code modularity
|
| 201 |
+
3. Component relationships
|
| 202 |
+
4. Architectural anti-patterns
|
| 203 |
+
5. System design principles
|
| 204 |
+
|
| 205 |
+
Provide your response in JSON format with these exact keys:
|
| 206 |
+
{{
|
| 207 |
+
"patterns_identified": ["list of design patterns found"],
|
| 208 |
+
"architectural_issues": ["list of architectural concerns"],
|
| 209 |
+
"improvement_suggestions": ["list of architectural improvements"],
|
| 210 |
+
"architecture_score": "1-10 score as a number"
|
| 211 |
+
}}"""
|
| 212 |
+
|
| 213 |
+
analysis = call_huggingface_api(prompt)
|
| 214 |
+
if "error" in analysis:
|
| 215 |
+
analysis = {
|
| 216 |
+
"patterns_identified": ["Error analyzing architecture"],
|
| 217 |
+
"architectural_issues": ["Analysis failed"],
|
| 218 |
+
"improvement_suggestions": ["Try again later"],
|
| 219 |
+
"architecture_score": 0
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
messages = state["messages"] + [AIMessage(content="Completed architecture analysis")]
|
| 223 |
+
return {**state, "messages": messages, "architecture_analysis": analysis, "current_step": "recommendations"}
|
| 224 |
+
|
| 225 |
+
def generate_final_recommendations(state: State) -> dict:
|
| 226 |
+
"""Generate final recommendations based on all analyses."""
|
| 227 |
+
code = state["code"]
|
| 228 |
+
prompt = f"""Analyze all previous results and provide final recommendations for this code:
|
| 229 |
+
|
| 230 |
+
Style Analysis: {json.dumps(state.get('style_analysis', {}))}
|
| 231 |
+
Security Analysis: {json.dumps(state.get('security_analysis', {}))}
|
| 232 |
+
Performance Analysis: {json.dumps(state.get('performance_analysis', {}))}
|
| 233 |
+
Architecture Analysis: {json.dumps(state.get('architecture_analysis', {}))}
|
| 234 |
+
|
| 235 |
+
Provide your response in JSON format with these exact keys:
|
| 236 |
+
{{
|
| 237 |
+
"critical_issues": ["list of most critical issues"],
|
| 238 |
+
"priority_improvements": ["list of high-priority improvements"],
|
| 239 |
+
"quick_wins": ["list of easy-to-implement improvements"],
|
| 240 |
+
"long_term_suggestions": ["list of long-term improvements"],
|
| 241 |
+
"overall_health_score": "1-10 score as a number"
|
| 242 |
+
}}"""
|
| 243 |
+
|
| 244 |
+
recommendations = call_huggingface_api(prompt)
|
| 245 |
+
if "error" in recommendations:
|
| 246 |
+
recommendations = {
|
| 247 |
+
"critical_issues": ["Error generating recommendations"],
|
| 248 |
+
"priority_improvements": ["Try again later"],
|
| 249 |
+
"quick_wins": [],
|
| 250 |
+
"long_term_suggestions": [],
|
| 251 |
+
"overall_health_score": 0
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
messages = state["messages"] + [AIMessage(content="Generated final recommendations")]
|
| 255 |
+
return {**state, "messages": messages, "final_recommendations": recommendations, "current_step": "end"}
|
| 256 |
+
|
| 257 |
+
def format_output(state: State) -> str:
|
| 258 |
+
"""Format the analysis results into a readable output."""
|
| 259 |
+
output = """π Code Analysis Report
|
| 260 |
+
|
| 261 |
+
π¨ Style & Best Practices
|
| 262 |
+
"""
|
| 263 |
+
style = state.get("style_analysis", {})
|
| 264 |
+
output += f"Rating: {style.get('overall_rating', 'N/A')}/10\n"
|
| 265 |
+
output += "Issues:\n" + "\n".join([f"β’ {issue}" for issue in style.get("issues", [])]) + "\n\n"
|
| 266 |
+
|
| 267 |
+
output += """π Security Analysis
|
| 268 |
+
"""
|
| 269 |
+
security = state.get("security_analysis", {})
|
| 270 |
+
output += f"Score: {security.get('overall_security_score', 'N/A')}/10\n"
|
| 271 |
+
vulnerabilities = security.get("vulnerabilities", [])
|
| 272 |
+
risk_levels = security.get("risk_levels", {})
|
| 273 |
+
output += "Vulnerabilities:\n" + "\n".join([f"β’ {v} ({risk_levels.get(v, 'Unknown')})" for v in vulnerabilities]) + "\n\n"
|
| 274 |
+
|
| 275 |
+
output += """β‘ Performance Analysis
|
| 276 |
+
"""
|
| 277 |
+
perf = state.get("performance_analysis", {})
|
| 278 |
+
output += f"Score: {perf.get('performance_score', 'N/A')}/10\n"
|
| 279 |
+
output += "Bottlenecks:\n" + "\n".join([f"β’ {b}" for b in perf.get("bottlenecks", [])]) + "\n\n"
|
| 280 |
+
|
| 281 |
+
output += """ποΈ Architecture Analysis
|
| 282 |
+
"""
|
| 283 |
+
arch = state.get("architecture_analysis", {})
|
| 284 |
+
output += f"Score: {arch.get('architecture_score', 'N/A')}/10\n"
|
| 285 |
+
output += "Patterns:\n" + "\n".join([f"β’ {p}" for p in arch.get("patterns_identified", [])]) + "\n\n"
|
| 286 |
+
|
| 287 |
+
output += """π Final Recommendations
|
| 288 |
+
"""
|
| 289 |
+
final = state.get("final_recommendations", {})
|
| 290 |
+
output += f"Overall Health Score: {final.get('overall_health_score', 'N/A')}/10\n\n"
|
| 291 |
+
output += "Critical Issues:\n" + "\n".join([f"β’ {i}" for i in final.get("critical_issues", [])]) + "\n\n"
|
| 292 |
+
output += "Priority Improvements:\n" + "\n".join([f"β’ {i}" for i in final.get("priority_improvements", [])])
|
| 293 |
+
|
| 294 |
+
return output
|
| 295 |
+
|
| 296 |
+
# Create and setup graph
|
| 297 |
+
workflow = StateGraph(State)
|
| 298 |
+
|
| 299 |
+
# Add nodes
|
| 300 |
+
workflow.add_node("style", analyze_code_style)
|
| 301 |
+
workflow.add_node("security", analyze_security)
|
| 302 |
+
workflow.add_node("performance", analyze_performance)
|
| 303 |
+
workflow.add_node("architecture", analyze_architecture)
|
| 304 |
+
workflow.add_node("recommendations", generate_final_recommendations)
|
| 305 |
+
|
| 306 |
+
# Add edges
|
| 307 |
+
workflow.add_edge("style", "security")
|
| 308 |
+
workflow.add_edge("security", "performance")
|
| 309 |
+
workflow.add_edge("performance", "architecture")
|
| 310 |
+
workflow.add_edge("architecture", "recommendations")
|
| 311 |
+
|
| 312 |
+
# Set entry and finish points
|
| 313 |
+
workflow.set_entry_point("style")
|
| 314 |
+
workflow.set_finish_point("recommendations")
|
| 315 |
+
|
| 316 |
+
# Compile the workflow
|
| 317 |
+
agent = workflow.compile()
|
| 318 |
+
|
| 319 |
+
def analyze_code(code: str) -> str:
|
| 320 |
+
"""Analyze the provided code using multiple perspectives."""
|
| 321 |
+
initial_state = State(
|
| 322 |
+
messages=[SystemMessage(content="Starting code analysis...")],
|
| 323 |
+
current_step="style",
|
| 324 |
+
code=code,
|
| 325 |
+
style_analysis={},
|
| 326 |
+
security_analysis={},
|
| 327 |
+
performance_analysis={},
|
| 328 |
+
architecture_analysis={},
|
| 329 |
+
final_recommendations={}
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
final_state = agent.invoke(initial_state)
|
| 333 |
+
return format_output(final_state)
|
| 334 |
+
|
| 335 |
+
# Create Gradio interface
|
| 336 |
+
iface = gr.Interface(
|
| 337 |
+
fn=analyze_code,
|
| 338 |
+
inputs=gr.Code(
|
| 339 |
+
label="Enter your code for analysis",
|
| 340 |
+
language="python",
|
| 341 |
+
lines=20
|
| 342 |
+
),
|
| 343 |
+
outputs=gr.Textbox(
|
| 344 |
+
label="Analysis Results",
|
| 345 |
+
lines=25
|
| 346 |
+
),
|
| 347 |
+
title="π Code Architecture Critic",
|
| 348 |
+
description="Paste your code to get a comprehensive analysis of style, security, performance, and architecture.",
|
| 349 |
+
examples=[
|
| 350 |
+
['''def process_data(data):
|
| 351 |
+
result = []
|
| 352 |
+
for i in range(len(data)):
|
| 353 |
+
for j in range(len(data)):
|
| 354 |
+
if data[i] + data[j] == 10:
|
| 355 |
+
result.append((data[i], data[j]))
|
| 356 |
+
return result
|
| 357 |
+
|
| 358 |
+
def save_to_db(user_input):
|
| 359 |
+
query = "INSERT INTO users VALUES ('" + user_input + "')"
|
| 360 |
+
db.execute(query)
|
| 361 |
+
|
| 362 |
+
API_KEY = "sk_test_123456789"''']
|
| 363 |
+
],
|
| 364 |
+
theme=gr.themes.Soft()
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
if __name__ == "__main__":
|
| 368 |
+
iface.launch()
|