Spaces:
Running
Running
Upload 3 files
Browse files- Dockerfile +27 -20
- app4.py +326 -0
- requirements.txt +12 -3
Dockerfile
CHANGED
|
@@ -1,20 +1,27 @@
|
|
| 1 |
-
FROM python:3.
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
# Set working directory
|
| 4 |
+
WORKDIR /app
|
| 5 |
+
|
| 6 |
+
# Create writable cache directories
|
| 7 |
+
RUN mkdir -p /app/.cache/huggingface/hub /app/.cache/torch
|
| 8 |
+
RUN chmod -R 777 /app/.cache
|
| 9 |
+
|
| 10 |
+
# Set environment variables for caches
|
| 11 |
+
ENV HF_HOME=/app/.cache/huggingface
|
| 12 |
+
ENV TRANSFORMERS_CACHE=/app/.cache/huggingface/transformers
|
| 13 |
+
ENV TORCH_HOME=/app/.cache/torch
|
| 14 |
+
ENV XDG_CACHE_HOME=/app/.cache
|
| 15 |
+
|
| 16 |
+
# Install dependencies
|
| 17 |
+
COPY requirements.txt .
|
| 18 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 19 |
+
|
| 20 |
+
# Copy app files
|
| 21 |
+
COPY . .
|
| 22 |
+
|
| 23 |
+
# Expose Streamlit port
|
| 24 |
+
EXPOSE 7860
|
| 25 |
+
|
| 26 |
+
# Run Streamlit
|
| 27 |
+
CMD ["streamlit", "run", "app4.py", "--server.port=7860", "--server.address=0.0.0.0"]
|
app4.py
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import numpy as np
|
| 4 |
+
import time
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
import datetime
|
| 7 |
+
import feedparser
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
import faiss, pickle
|
| 10 |
+
import aiohttp
|
| 11 |
+
import asyncio
|
| 12 |
+
import sqlite3
|
| 13 |
+
|
| 14 |
+
# -------------------------------
|
| 15 |
+
# CONFIG & PRIVATE STORAGE PATHS
|
| 16 |
+
# -------------------------------
|
| 17 |
+
PRIVATE_DIR = ".internal_data"
|
| 18 |
+
os.makedirs(PRIVATE_DIR, exist_ok=True)
|
| 19 |
+
|
| 20 |
+
CACHE_DB_PATH = os.path.join(PRIVATE_DIR, "query_cache.db")
|
| 21 |
+
ADMIN_DB_PATH = os.path.join(PRIVATE_DIR, "cache_admin.db")
|
| 22 |
+
|
| 23 |
+
# -------------------------------
|
| 24 |
+
# DATABASE INITIALIZATION
|
| 25 |
+
# -------------------------------
|
| 26 |
+
def init_cache_db(db_path=CACHE_DB_PATH):
|
| 27 |
+
conn = sqlite3.connect(db_path, check_same_thread=False)
|
| 28 |
+
c = conn.cursor()
|
| 29 |
+
c.execute("""
|
| 30 |
+
CREATE TABLE IF NOT EXISTS cache (
|
| 31 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 32 |
+
query TEXT UNIQUE,
|
| 33 |
+
answer TEXT,
|
| 34 |
+
embedding BLOB,
|
| 35 |
+
frequency INTEGER DEFAULT 1
|
| 36 |
+
)
|
| 37 |
+
""")
|
| 38 |
+
conn.commit()
|
| 39 |
+
return conn
|
| 40 |
+
|
| 41 |
+
def init_admin_db(db_path=ADMIN_DB_PATH):
|
| 42 |
+
conn = sqlite3.connect(db_path, check_same_thread=False)
|
| 43 |
+
c = conn.cursor()
|
| 44 |
+
c.execute("""
|
| 45 |
+
CREATE TABLE IF NOT EXISTS logs (
|
| 46 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 47 |
+
ts TEXT,
|
| 48 |
+
query TEXT,
|
| 49 |
+
cached INTEGER,
|
| 50 |
+
faiss_score REAL
|
| 51 |
+
)
|
| 52 |
+
""")
|
| 53 |
+
conn.commit()
|
| 54 |
+
return conn
|
| 55 |
+
|
| 56 |
+
cache_conn = init_cache_db()
|
| 57 |
+
admin_conn = init_admin_db()
|
| 58 |
+
|
| 59 |
+
# -------------------------------
|
| 60 |
+
# ADMIN LOGGING (PRIVATE DB)
|
| 61 |
+
# -------------------------------
|
| 62 |
+
def admin_log(query, cached: bool, faiss_score: float | None):
|
| 63 |
+
c = admin_conn.cursor()
|
| 64 |
+
c.execute(
|
| 65 |
+
"INSERT INTO logs (ts, query, cached, faiss_score) VALUES (?, ?, ?, ?)",
|
| 66 |
+
(datetime.datetime.now().isoformat(), query, int(bool(cached)), None if faiss_score is None else float(faiss_score))
|
| 67 |
+
)
|
| 68 |
+
admin_conn.commit()
|
| 69 |
+
|
| 70 |
+
# -------------------------------
|
| 71 |
+
# SIMPLE CACHE HELPERS (EXACT MATCH)
|
| 72 |
+
# -------------------------------
|
| 73 |
+
def store_in_cache(query, answer, embedding: np.ndarray):
|
| 74 |
+
c = cache_conn.cursor()
|
| 75 |
+
c.execute("""
|
| 76 |
+
INSERT OR REPLACE INTO cache (query, answer, embedding, frequency)
|
| 77 |
+
VALUES (?, ?, ?, COALESCE((SELECT frequency FROM cache WHERE query=?), 0) + 1)
|
| 78 |
+
""", (query, answer, embedding.astype(np.float32).tobytes(), query))
|
| 79 |
+
cache_conn.commit()
|
| 80 |
+
|
| 81 |
+
def search_cache_exact(query):
|
| 82 |
+
c = cache_conn.cursor()
|
| 83 |
+
c.execute("SELECT answer FROM cache WHERE query = ?", (query,))
|
| 84 |
+
row = c.fetchone()
|
| 85 |
+
return row[0] if row else None
|
| 86 |
+
|
| 87 |
+
def get_top_cached_queries(limit=5):
|
| 88 |
+
c = cache_conn.cursor()
|
| 89 |
+
c.execute("SELECT query, frequency FROM cache ORDER BY frequency DESC LIMIT ?", (limit,))
|
| 90 |
+
return c.fetchall()
|
| 91 |
+
|
| 92 |
+
# -------------------------------
|
| 93 |
+
# Load FAISS index + embedder
|
| 94 |
+
# -------------------------------
|
| 95 |
+
@st.cache_resource
|
| 96 |
+
def load_index_and_model():
|
| 97 |
+
faiss_path = hf_hub_download(
|
| 98 |
+
repo_id="krishnasimha/health-chatbot-data",
|
| 99 |
+
filename="health_index.faiss",
|
| 100 |
+
repo_type="dataset"
|
| 101 |
+
)
|
| 102 |
+
pkl_path = hf_hub_download(
|
| 103 |
+
repo_id="krishnasimha/health-chatbot-data",
|
| 104 |
+
filename="health_metadata.pkl",
|
| 105 |
+
repo_type="dataset"
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
index = faiss.read_index(faiss_path)
|
| 109 |
+
with open(pkl_path, "rb") as f:
|
| 110 |
+
metadata = pickle.load(f)
|
| 111 |
+
|
| 112 |
+
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 113 |
+
return index, metadata, embed_model
|
| 114 |
+
|
| 115 |
+
index, metadata, embed_model = load_index_and_model()
|
| 116 |
+
|
| 117 |
+
# -------------------------------
|
| 118 |
+
# FAISS benchmark (sidebar)
|
| 119 |
+
# -------------------------------
|
| 120 |
+
def benchmark_faiss(n_queries=40, k=3):
|
| 121 |
+
queries = ["What is diabetes?", "How to prevent malaria?", "Symptoms of dengue?"]
|
| 122 |
+
query_embs = embed_model.encode(queries, convert_to_numpy=True)
|
| 123 |
+
times = []
|
| 124 |
+
for _ in range(n_queries):
|
| 125 |
+
q = query_embs[np.random.randint(0, len(query_embs))].reshape(1, -1)
|
| 126 |
+
start = time.time()
|
| 127 |
+
index.search(q, k)
|
| 128 |
+
times.append(time.time() - start)
|
| 129 |
+
avg_time = np.mean(times) * 1000
|
| 130 |
+
st.sidebar.write(f"β‘ FAISS Speed: {avg_time:.2f} ms/query")
|
| 131 |
+
|
| 132 |
+
# -------------------------------
|
| 133 |
+
# RSS News fetcher (async)
|
| 134 |
+
# -------------------------------
|
| 135 |
+
RSS_URL = "https://news.google.com/rss/search?q=health+disease+awareness&hl=en-IN&gl=IN&ceid=IN:en"
|
| 136 |
+
|
| 137 |
+
async def fetch_rss_url(url):
|
| 138 |
+
async with aiohttp.ClientSession() as session:
|
| 139 |
+
async with session.get(url) as resp:
|
| 140 |
+
return await resp.text()
|
| 141 |
+
|
| 142 |
+
def fetch_news():
|
| 143 |
+
try:
|
| 144 |
+
xml = asyncio.run(fetch_rss_url(RSS_URL))
|
| 145 |
+
feed = feedparser.parse(xml)
|
| 146 |
+
return [{"title": e.title, "link": e.link, "published": getattr(e, "published", "")} for e in feed.entries[:5]]
|
| 147 |
+
except Exception:
|
| 148 |
+
return []
|
| 149 |
+
|
| 150 |
+
def update_news_hourly():
|
| 151 |
+
now = datetime.datetime.now()
|
| 152 |
+
if "last_news_update" not in st.session_state or (now - st.session_state.last_news_update).seconds > 3600:
|
| 153 |
+
st.session_state.last_news_update = now
|
| 154 |
+
st.session_state.news_articles = fetch_news()
|
| 155 |
+
|
| 156 |
+
# -------------------------------
|
| 157 |
+
# Together API async call
|
| 158 |
+
# -------------------------------
|
| 159 |
+
async def async_together_chat(messages):
|
| 160 |
+
url = "https://api.together.xyz/v1/chat/completions"
|
| 161 |
+
headers = {
|
| 162 |
+
"Authorization": f"Bearer {os.environ.get('TOGETHER_API_KEY','')}",
|
| 163 |
+
"Content-Type": "application/json",
|
| 164 |
+
}
|
| 165 |
+
payload = {"model": "deepseek-ai/DeepSeek-V3", "messages": messages}
|
| 166 |
+
|
| 167 |
+
async with aiohttp.ClientSession() as session:
|
| 168 |
+
async with session.post(url, headers=headers, json=payload) as resp:
|
| 169 |
+
resp.raise_for_status()
|
| 170 |
+
data = await resp.json()
|
| 171 |
+
return data["choices"][0]["message"]["content"]
|
| 172 |
+
|
| 173 |
+
# -------------------------------
|
| 174 |
+
# Main retrieval flow (exact-match cache -> faiss -> API)
|
| 175 |
+
# -------------------------------
|
| 176 |
+
def retrieve_answer(query, k=3):
|
| 177 |
+
# 1) exact cache
|
| 178 |
+
cached = search_cache_exact(query)
|
| 179 |
+
if cached:
|
| 180 |
+
admin_log(query, True, None)
|
| 181 |
+
st.sidebar.success("β‘ From cache")
|
| 182 |
+
return cached, []
|
| 183 |
+
|
| 184 |
+
# 2) FAISS retrieval on KB
|
| 185 |
+
q_emb = embed_model.encode([query], convert_to_numpy=True)
|
| 186 |
+
D, I = index.search(q_emb, k)
|
| 187 |
+
retrieved = [metadata["texts"][i] for i in I[0]]
|
| 188 |
+
sources = [metadata["sources"][i] for i in I[0]]
|
| 189 |
+
context = "\n".join(retrieved)
|
| 190 |
+
|
| 191 |
+
user_message = {"role": "user", "content": f"Use the context to answer:\n\n{context}\n\nQuestion: {query}"}
|
| 192 |
+
# append to session chat
|
| 193 |
+
if "chats" not in st.session_state:
|
| 194 |
+
st.session_state.chats = {}
|
| 195 |
+
if st.session_state.current_chat not in st.session_state.chats:
|
| 196 |
+
st.session_state.chats[st.session_state.current_chat] = [{"role":"system","content":"You are a helpful public health bot."}]
|
| 197 |
+
st.session_state.chats[st.session_state.current_chat].append(user_message)
|
| 198 |
+
|
| 199 |
+
# 3) Call LLM
|
| 200 |
+
answer = asyncio.run(async_together_chat(st.session_state.chats[st.session_state.current_chat]))
|
| 201 |
+
|
| 202 |
+
# 4) store exact query -> answer mapping
|
| 203 |
+
store_in_cache(query, answer, q_emb[0])
|
| 204 |
+
# record admin log with FAISS distance score (D contains distances; lower means closer for many indexes)
|
| 205 |
+
# For readability we convert the first distance to float if present
|
| 206 |
+
faiss_score = float(D[0][0]) if (D is not None and len(D) and len(D[0])) else None
|
| 207 |
+
admin_log(query, False, faiss_score)
|
| 208 |
+
|
| 209 |
+
st.session_state.chats[st.session_state.current_chat].append({"role":"assistant","content":answer})
|
| 210 |
+
return answer, sources
|
| 211 |
+
|
| 212 |
+
# -------------------------------
|
| 213 |
+
# Background news updater (fire-and-forget)
|
| 214 |
+
# -------------------------------
|
| 215 |
+
async def news_updater_loop():
|
| 216 |
+
while True:
|
| 217 |
+
st.session_state.news_articles = fetch_news()
|
| 218 |
+
await asyncio.sleep(3600)
|
| 219 |
+
|
| 220 |
+
if "news_task" not in st.session_state:
|
| 221 |
+
loop = asyncio.new_event_loop()
|
| 222 |
+
asyncio.set_event_loop(loop)
|
| 223 |
+
st.session_state.news_task = loop.create_task(news_updater_loop())
|
| 224 |
+
|
| 225 |
+
# -------------------------------
|
| 226 |
+
# Streamlit UI (main)
|
| 227 |
+
# -------------------------------
|
| 228 |
+
st.title("Health Awareness Chatbot")
|
| 229 |
+
|
| 230 |
+
# Chat initialization (session)
|
| 231 |
+
if "chats" not in st.session_state:
|
| 232 |
+
st.session_state.chats = {}
|
| 233 |
+
if "current_chat" not in st.session_state:
|
| 234 |
+
st.session_state.current_chat = "New Chat 1"
|
| 235 |
+
st.session_state.chats["New Chat 1"] = [{"role":"system","content":"You are a helpful public health awareness chatbot."}]
|
| 236 |
+
|
| 237 |
+
# Sidebar: Chat manager + benchmark + top cached queries (fast, read-only)
|
| 238 |
+
st.sidebar.header("Chat Manager")
|
| 239 |
+
if st.sidebar.button("β New Chat"):
|
| 240 |
+
name = f"New Chat {len(st.session_state.chats) + 1}"
|
| 241 |
+
st.session_state.chats[name] = [{"role":"system","content":"You are a helpful public health awareness chatbot."}]
|
| 242 |
+
st.session_state.current_chat = name
|
| 243 |
+
|
| 244 |
+
benchmark_faiss()
|
| 245 |
+
|
| 246 |
+
# Show top cached queries in the sidebar (helpful to the user to pick exact strings)
|
| 247 |
+
st.sidebar.subheader("π₯ Most Asked Questions")
|
| 248 |
+
top_qs = get_top_cached_queries(limit=5)
|
| 249 |
+
if top_qs:
|
| 250 |
+
for q, freq in top_qs:
|
| 251 |
+
st.sidebar.write(f"**{q}** β used {freq} times")
|
| 252 |
+
else:
|
| 253 |
+
st.sidebar.write("_No cached queries yet._")
|
| 254 |
+
|
| 255 |
+
# Chat selector (unique key to avoid duplicate-element error)
|
| 256 |
+
chat_list = list(st.session_state.chats.keys())
|
| 257 |
+
selected_chat = st.sidebar.selectbox(
|
| 258 |
+
"Your chats:",
|
| 259 |
+
chat_list,
|
| 260 |
+
index=chat_list.index(st.session_state.current_chat),
|
| 261 |
+
key="chat_selector"
|
| 262 |
+
)
|
| 263 |
+
st.session_state.current_chat = selected_chat
|
| 264 |
+
|
| 265 |
+
# Rename chat
|
| 266 |
+
new_name = st.sidebar.text_input("Rename Chat:", st.session_state.current_chat, key="rename_chat")
|
| 267 |
+
if new_name and new_name != st.session_state.current_chat:
|
| 268 |
+
if new_name not in st.session_state.chats:
|
| 269 |
+
st.session_state.chats[new_name] = st.session_state.chats.pop(st.session_state.current_chat)
|
| 270 |
+
st.session_state.current_chat = new_name
|
| 271 |
+
|
| 272 |
+
# -------------------------------
|
| 273 |
+
# News section & query input
|
| 274 |
+
# -------------------------------
|
| 275 |
+
update_news_hourly()
|
| 276 |
+
st.subheader("π° Latest Health News")
|
| 277 |
+
if "news_articles" in st.session_state:
|
| 278 |
+
for art in st.session_state.news_articles:
|
| 279 |
+
st.markdown(f"**{art['title']}** \n[Read more]({art['link']}) \n*{art['published']}*")
|
| 280 |
+
st.write("---")
|
| 281 |
+
|
| 282 |
+
user_query = st.text_input("Ask me about health, prevention, or awareness:")
|
| 283 |
+
|
| 284 |
+
if user_query:
|
| 285 |
+
with st.spinner("Searching knowledge base..."):
|
| 286 |
+
answer, sources = retrieve_answer(user_query)
|
| 287 |
+
st.write("### π‘ Answer")
|
| 288 |
+
st.write(answer)
|
| 289 |
+
|
| 290 |
+
st.write("### π Sources")
|
| 291 |
+
for src in sources:
|
| 292 |
+
st.write(f"- {src}")
|
| 293 |
+
|
| 294 |
+
# Render chat history
|
| 295 |
+
for msg in st.session_state.chats[st.session_state.current_chat]:
|
| 296 |
+
if msg["role"] == "user":
|
| 297 |
+
st.write(f"π§ **You:** {msg['content']}")
|
| 298 |
+
elif msg["role"] == "assistant":
|
| 299 |
+
st.write(f"π€ **Bot:** {msg['content']}")
|
| 300 |
+
|
| 301 |
+
# -------------------------------
|
| 302 |
+
# ADMIN (hidden) - only visible if admin key provided
|
| 303 |
+
# -------------------------------
|
| 304 |
+
# Get admin key from secrets or environment
|
| 305 |
+
ADMIN_KEY_SECRET = None
|
| 306 |
+
try:
|
| 307 |
+
ADMIN_KEY_SECRET = st.secrets["ADMIN_KEY"]
|
| 308 |
+
except Exception:
|
| 309 |
+
ADMIN_KEY_SECRET = os.environ.get("ADMIN_KEY", None)
|
| 310 |
+
|
| 311 |
+
# Admin panel in sidebar (password protected). Only you should know the key.
|
| 312 |
+
with st.sidebar.expander("π Admin (hidden)"):
|
| 313 |
+
dev_key = st.text_input("Admin key (password):", type="password", key="admin_key_input")
|
| 314 |
+
if dev_key and ADMIN_KEY_SECRET and dev_key == ADMIN_KEY_SECRET:
|
| 315 |
+
st.success("Admin access granted β private logs shown below.")
|
| 316 |
+
# Show private logs from admin DB (careful: this is only visible to whoever knows the key)
|
| 317 |
+
c = admin_conn.cursor()
|
| 318 |
+
rows = c.execute("SELECT id, ts, query, cached, faiss_score FROM logs ORDER BY id DESC LIMIT 200").fetchall()
|
| 319 |
+
st.write(f"Showing {len(rows)} recent log rows (private).")
|
| 320 |
+
for rid, ts, q, cached, score in rows:
|
| 321 |
+
st.text(f"[{rid}] {ts} | cached={bool(cached)} | faiss_score={score}")
|
| 322 |
+
st.markdown(f"- **Q:** {q}")
|
| 323 |
+
st.write("---")
|
| 324 |
+
elif dev_key:
|
| 325 |
+
st.error("Wrong admin key.")
|
| 326 |
+
|
requirements.txt
CHANGED
|
@@ -1,3 +1,12 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
numpy
|
| 3 |
+
sentence-transformers
|
| 4 |
+
together
|
| 5 |
+
aiohttp
|
| 6 |
+
feedparser
|
| 7 |
+
huggingface_hub
|
| 8 |
+
faiss-cpu
|
| 9 |
+
pickle5
|
| 10 |
+
sqlite3-binary
|
| 11 |
+
|
| 12 |
+
|