Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
SMI Volatility Forecast - Hugging Face Gradio App
|
| 3 |
+
LΓ€uft direkt auf Hugging Face Spaces
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import yfinance as yf
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import numpy as np
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
import warnings
|
| 12 |
+
warnings.filterwarnings('ignore')
|
| 13 |
+
|
| 14 |
+
# FΓΌr Plots
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
import io
|
| 17 |
+
from PIL import Image
|
| 18 |
+
|
| 19 |
+
class VolatilityForecaster:
|
| 20 |
+
def __init__(self, ticker, interval='5m', period='60d'):
|
| 21 |
+
self.ticker = ticker
|
| 22 |
+
self.interval = interval
|
| 23 |
+
self.period = period
|
| 24 |
+
self.data = None
|
| 25 |
+
self.returns = None
|
| 26 |
+
self.volatility = None
|
| 27 |
+
|
| 28 |
+
def fetch_data(self):
|
| 29 |
+
"""Fetch data from Yahoo Finance"""
|
| 30 |
+
stock = yf.Ticker(self.ticker)
|
| 31 |
+
self.data = stock.history(period=self.period, interval=self.interval)
|
| 32 |
+
|
| 33 |
+
if self.data.empty:
|
| 34 |
+
raise ValueError(f"No data found for {self.ticker}")
|
| 35 |
+
|
| 36 |
+
return self.data
|
| 37 |
+
|
| 38 |
+
def calculate_volatility(self, window=20):
|
| 39 |
+
"""Calculate rolling volatility from returns"""
|
| 40 |
+
self.returns = np.log(self.data['Close'] / self.data['Close'].shift(1))
|
| 41 |
+
periods_per_day = 78
|
| 42 |
+
periods_per_year = periods_per_day * 252
|
| 43 |
+
|
| 44 |
+
self.volatility = self.returns.rolling(window=window).std() * np.sqrt(periods_per_year)
|
| 45 |
+
self.volatility = self.volatility.dropna()
|
| 46 |
+
|
| 47 |
+
return self.volatility
|
| 48 |
+
|
| 49 |
+
def prepare_forecast_data(self, forecast_horizon=12):
|
| 50 |
+
"""Prepare data for forecasting"""
|
| 51 |
+
train_size = int(len(self.volatility) * 0.8)
|
| 52 |
+
|
| 53 |
+
train_data = self.volatility.iloc[:train_size].values
|
| 54 |
+
test_data = self.volatility.iloc[train_size:train_size+forecast_horizon].values
|
| 55 |
+
test_dates = self.volatility.index[train_size:train_size+forecast_horizon]
|
| 56 |
+
|
| 57 |
+
return train_data, test_data, test_dates
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class ModelComparison:
|
| 61 |
+
def __init__(self, train_data, test_data, test_dates, forecast_horizon=12):
|
| 62 |
+
self.train_data = train_data
|
| 63 |
+
self.test_data = test_data
|
| 64 |
+
self.test_dates = test_dates
|
| 65 |
+
self.forecast_horizon = forecast_horizon
|
| 66 |
+
self.results = {}
|
| 67 |
+
|
| 68 |
+
def forecast_chronos(self):
|
| 69 |
+
"""Chronos-Modell von Amazon"""
|
| 70 |
+
try:
|
| 71 |
+
from chronos import ChronosPipeline
|
| 72 |
+
import torch
|
| 73 |
+
|
| 74 |
+
pipeline = ChronosPipeline.from_pretrained(
|
| 75 |
+
"amazon/chronos-t5-small",
|
| 76 |
+
device_map="cpu",
|
| 77 |
+
torch_dtype=torch.bfloat16,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
context = torch.tensor(self.train_data[-100:])
|
| 81 |
+
forecast = pipeline.predict(
|
| 82 |
+
context=context,
|
| 83 |
+
prediction_length=self.forecast_horizon,
|
| 84 |
+
num_samples=20
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
forecast_median = np.median(forecast[0].numpy(), axis=0)
|
| 88 |
+
|
| 89 |
+
self.results['Chronos'] = {
|
| 90 |
+
'forecast': forecast_median,
|
| 91 |
+
'actual': self.test_data,
|
| 92 |
+
'dates': self.test_dates
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
return True
|
| 96 |
+
|
| 97 |
+
except Exception as e:
|
| 98 |
+
print(f"Chronos failed: {str(e)}")
|
| 99 |
+
return False
|
| 100 |
+
|
| 101 |
+
def forecast_moirai(self):
|
| 102 |
+
"""Moirai-Modell"""
|
| 103 |
+
try:
|
| 104 |
+
from uni2ts.model.moirai import MoiraiForecast
|
| 105 |
+
|
| 106 |
+
model = MoiraiForecast.load_from_checkpoint(
|
| 107 |
+
checkpoint_path="Salesforce/moirai-1.0-R-small",
|
| 108 |
+
map_location="cpu"
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
forecast = model.forecast(
|
| 112 |
+
past_data=self.train_data[-512:],
|
| 113 |
+
prediction_length=self.forecast_horizon
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
self.results['Moirai'] = {
|
| 117 |
+
'forecast': forecast.mean().numpy(),
|
| 118 |
+
'actual': self.test_data,
|
| 119 |
+
'dates': self.test_dates
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
return True
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
print(f"Moirai failed: {str(e)}")
|
| 126 |
+
return False
|
| 127 |
+
|
| 128 |
+
def forecast_moment(self):
|
| 129 |
+
"""MOMENT-Modell"""
|
| 130 |
+
try:
|
| 131 |
+
from momentfm import MOMENTPipeline
|
| 132 |
+
|
| 133 |
+
model = MOMENTPipeline.from_pretrained(
|
| 134 |
+
"AutonLab/MOMENT-1-large",
|
| 135 |
+
model_kwargs={'task_name': 'forecasting'}
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
context = self.train_data[-512:].reshape(1, -1)
|
| 139 |
+
forecast = model(context, output_length=self.forecast_horizon)
|
| 140 |
+
|
| 141 |
+
self.results['MOMENT'] = {
|
| 142 |
+
'forecast': forecast[0],
|
| 143 |
+
'actual': self.test_data,
|
| 144 |
+
'dates': self.test_dates
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
return True
|
| 148 |
+
|
| 149 |
+
except Exception as e:
|
| 150 |
+
print(f"MOMENT failed: {str(e)}")
|
| 151 |
+
return False
|
| 152 |
+
|
| 153 |
+
def forecast_timesfm(self):
|
| 154 |
+
"""TimesFM-Modell"""
|
| 155 |
+
try:
|
| 156 |
+
import timesfm
|
| 157 |
+
|
| 158 |
+
tfm = timesfm.TimesFm(
|
| 159 |
+
context_len=512,
|
| 160 |
+
horizon_len=self.forecast_horizon,
|
| 161 |
+
input_patch_len=32,
|
| 162 |
+
output_patch_len=128,
|
| 163 |
+
)
|
| 164 |
+
tfm.load_from_checkpoint()
|
| 165 |
+
|
| 166 |
+
forecast = tfm.forecast(
|
| 167 |
+
inputs=[self.train_data[-512:]],
|
| 168 |
+
freq=[0]
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
self.results['TimesFM'] = {
|
| 172 |
+
'forecast': forecast[0],
|
| 173 |
+
'actual': self.test_data,
|
| 174 |
+
'dates': self.test_dates
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
return True
|
| 178 |
+
|
| 179 |
+
except Exception as e:
|
| 180 |
+
print(f"TimesFM failed: {str(e)}")
|
| 181 |
+
return False
|
| 182 |
+
|
| 183 |
+
def calculate_metrics(self):
|
| 184 |
+
"""Calculate comprehensive performance metrics"""
|
| 185 |
+
metrics_df = []
|
| 186 |
+
|
| 187 |
+
for model_name, result in self.results.items():
|
| 188 |
+
if result is None:
|
| 189 |
+
continue
|
| 190 |
+
|
| 191 |
+
forecast = result['forecast']
|
| 192 |
+
actual = result['actual']
|
| 193 |
+
|
| 194 |
+
mae = np.mean(np.abs(forecast - actual))
|
| 195 |
+
rmse = np.sqrt(np.mean((forecast - actual)**2))
|
| 196 |
+
mape = np.mean(np.abs((actual - forecast) / (actual + 1e-10))) * 100
|
| 197 |
+
|
| 198 |
+
if len(actual) > 1:
|
| 199 |
+
actual_direction = np.sign(np.diff(actual))
|
| 200 |
+
forecast_direction = np.sign(np.diff(forecast))
|
| 201 |
+
directional_accuracy = np.mean(actual_direction == forecast_direction) * 100
|
| 202 |
+
else:
|
| 203 |
+
directional_accuracy = 0
|
| 204 |
+
|
| 205 |
+
ss_res = np.sum((actual - forecast)**2)
|
| 206 |
+
ss_tot = np.sum((actual - np.mean(actual))**2)
|
| 207 |
+
r2 = 1 - (ss_res / (ss_tot + 1e-10))
|
| 208 |
+
|
| 209 |
+
metrics_df.append({
|
| 210 |
+
'Model': model_name,
|
| 211 |
+
'MAE': mae,
|
| 212 |
+
'RMSE': rmse,
|
| 213 |
+
'MAPE (%)': mape,
|
| 214 |
+
'RΒ²': r2,
|
| 215 |
+
'Dir. Acc. (%)': directional_accuracy
|
| 216 |
+
})
|
| 217 |
+
|
| 218 |
+
return pd.DataFrame(metrics_df)
|
| 219 |
+
|
| 220 |
+
def run_all_forecasts(self):
|
| 221 |
+
"""Run all model forecasts"""
|
| 222 |
+
success_count = 0
|
| 223 |
+
|
| 224 |
+
if self.forecast_chronos():
|
| 225 |
+
success_count += 1
|
| 226 |
+
if self.forecast_moirai():
|
| 227 |
+
success_count += 1
|
| 228 |
+
if self.forecast_moment():
|
| 229 |
+
success_count += 1
|
| 230 |
+
if self.forecast_timesfm():
|
| 231 |
+
success_count += 1
|
| 232 |
+
|
| 233 |
+
return self.calculate_metrics(), success_count
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def create_plot(comparison, stock_name):
|
| 237 |
+
"""Create visualization"""
|
| 238 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
|
| 239 |
+
|
| 240 |
+
colors = {'Chronos': 'red', 'Moirai': 'blue', 'MOMENT': 'green', 'TimesFM': 'orange'}
|
| 241 |
+
|
| 242 |
+
# Plot 1: Forecasts
|
| 243 |
+
for model_name, result in comparison.results.items():
|
| 244 |
+
if result is not None:
|
| 245 |
+
ax1.plot(result['dates'], result['actual'], 'k-',
|
| 246 |
+
linewidth=2.5, label='Actual', marker='o')
|
| 247 |
+
break
|
| 248 |
+
|
| 249 |
+
for model_name, result in comparison.results.items():
|
| 250 |
+
if result is not None:
|
| 251 |
+
ax1.plot(result['dates'], result['forecast'],
|
| 252 |
+
color=colors.get(model_name, 'gray'),
|
| 253 |
+
linestyle='--', linewidth=2,
|
| 254 |
+
label=f'{model_name}', marker='x')
|
| 255 |
+
|
| 256 |
+
ax1.set_xlabel('Time')
|
| 257 |
+
ax1.set_ylabel('Volatility (annualized)')
|
| 258 |
+
ax1.set_title(f'{stock_name} - Volatility Forecast')
|
| 259 |
+
ax1.legend()
|
| 260 |
+
ax1.grid(True, alpha=0.3)
|
| 261 |
+
ax1.tick_params(axis='x', rotation=45)
|
| 262 |
+
|
| 263 |
+
# Plot 2: Metrics
|
| 264 |
+
metrics_df = comparison.calculate_metrics()
|
| 265 |
+
if not metrics_df.empty:
|
| 266 |
+
models = metrics_df['Model'].tolist()
|
| 267 |
+
mae_values = metrics_df['MAE'].tolist()
|
| 268 |
+
rmse_values = metrics_df['RMSE'].tolist()
|
| 269 |
+
|
| 270 |
+
x = np.arange(len(models))
|
| 271 |
+
width = 0.35
|
| 272 |
+
|
| 273 |
+
ax2.bar(x - width/2, mae_values, width, label='MAE', alpha=0.8)
|
| 274 |
+
ax2.bar(x + width/2, rmse_values, width, label='RMSE', alpha=0.8)
|
| 275 |
+
|
| 276 |
+
ax2.set_xlabel('Model')
|
| 277 |
+
ax2.set_ylabel('Error')
|
| 278 |
+
ax2.set_title(f'{stock_name} - MAE & RMSE Comparison')
|
| 279 |
+
ax2.set_xticks(x)
|
| 280 |
+
ax2.set_xticklabels(models, rotation=45)
|
| 281 |
+
ax2.legend()
|
| 282 |
+
ax2.grid(True, alpha=0.3, axis='y')
|
| 283 |
+
|
| 284 |
+
plt.tight_layout()
|
| 285 |
+
|
| 286 |
+
# Convert to image
|
| 287 |
+
buf = io.BytesIO()
|
| 288 |
+
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
|
| 289 |
+
buf.seek(0)
|
| 290 |
+
img = Image.open(buf)
|
| 291 |
+
plt.close()
|
| 292 |
+
|
| 293 |
+
return img
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
def run_forecast(stock_ticker, forecast_minutes):
|
| 297 |
+
"""Main function for Gradio interface"""
|
| 298 |
+
try:
|
| 299 |
+
forecast_horizon = forecast_minutes // 5 # Convert to 5-min periods
|
| 300 |
+
|
| 301 |
+
status = f"π Starting forecast for {stock_ticker}...\n\n"
|
| 302 |
+
|
| 303 |
+
# Fetch data
|
| 304 |
+
status += "π₯ Fetching data from Yahoo Finance...\n"
|
| 305 |
+
forecaster = VolatilityForecaster(ticker=stock_ticker, interval='5m', period='60d')
|
| 306 |
+
forecaster.fetch_data()
|
| 307 |
+
|
| 308 |
+
status += f"β
Downloaded {len(forecaster.data)} data points\n"
|
| 309 |
+
status += f"π
Date range: {forecaster.data.index[0]} to {forecaster.data.index[-1]}\n\n"
|
| 310 |
+
|
| 311 |
+
# Calculate volatility
|
| 312 |
+
status += "π Calculating volatility...\n"
|
| 313 |
+
forecaster.calculate_volatility(window=20)
|
| 314 |
+
|
| 315 |
+
train_data, test_data, test_dates = forecaster.prepare_forecast_data(
|
| 316 |
+
forecast_horizon=forecast_horizon
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
status += f"π Training data points: {len(train_data)}\n"
|
| 320 |
+
status += f"π Test data points: {len(test_data)}\n"
|
| 321 |
+
status += f"π
Test period: {test_dates[0]} to {test_dates[-1]}\n\n"
|
| 322 |
+
|
| 323 |
+
# Run forecasts
|
| 324 |
+
status += "π€ Running model forecasts...\n\n"
|
| 325 |
+
comparison = ModelComparison(train_data, test_data, test_dates, forecast_horizon)
|
| 326 |
+
metrics_df, success_count = comparison.run_all_forecasts()
|
| 327 |
+
|
| 328 |
+
status += f"β
Successfully ran {success_count}/4 models\n\n"
|
| 329 |
+
|
| 330 |
+
# Create plot
|
| 331 |
+
plot_img = create_plot(comparison, stock_ticker)
|
| 332 |
+
|
| 333 |
+
# Format results
|
| 334 |
+
if not metrics_df.empty:
|
| 335 |
+
metrics_str = metrics_df.to_string(index=False)
|
| 336 |
+
|
| 337 |
+
best_rmse = metrics_df.loc[metrics_df['RMSE'].idxmin(), 'Model']
|
| 338 |
+
best_r2 = metrics_df.loc[metrics_df['RΒ²'].idxmax(), 'Model']
|
| 339 |
+
|
| 340 |
+
status += "="*60 + "\n"
|
| 341 |
+
status += "π RESULTS\n"
|
| 342 |
+
status += "="*60 + "\n\n"
|
| 343 |
+
status += metrics_str + "\n\n"
|
| 344 |
+
status += f"π Best Model (RMSE): {best_rmse}\n"
|
| 345 |
+
status += f"π Best Model (RΒ²): {best_r2}\n"
|
| 346 |
+
else:
|
| 347 |
+
status += "β No models completed successfully\n"
|
| 348 |
+
plot_img = None
|
| 349 |
+
|
| 350 |
+
return status, plot_img, metrics_df
|
| 351 |
+
|
| 352 |
+
except Exception as e:
|
| 353 |
+
return f"β Error: {str(e)}", None, None
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
# Gradio Interface
|
| 357 |
+
with gr.Blocks(title="SMI Volatility Forecast") as demo:
|
| 358 |
+
gr.Markdown("""
|
| 359 |
+
# π SMI Volatility Forecast - Model Comparison
|
| 360 |
+
|
| 361 |
+
Compare **Chronos, Moirai, MOMENT, and TimesFM** foundation models for volatility forecasting.
|
| 362 |
+
|
| 363 |
+
This app uses 5-minute data from Yahoo Finance (max 60 days) to predict volatility.
|
| 364 |
+
""")
|
| 365 |
+
|
| 366 |
+
with gr.Row():
|
| 367 |
+
with gr.Column(scale=1):
|
| 368 |
+
stock_input = gr.Dropdown(
|
| 369 |
+
choices=['NESN.SW', 'NOVN.SW', 'ROG.SW', 'UBSG.SW', 'ABBN.SW'],
|
| 370 |
+
value='NESN.SW',
|
| 371 |
+
label="π Select SMI Stock"
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
forecast_input = gr.Slider(
|
| 375 |
+
minimum=30,
|
| 376 |
+
maximum=120,
|
| 377 |
+
value=60,
|
| 378 |
+
step=30,
|
| 379 |
+
label="β±οΈ Forecast Horizon (minutes)"
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
run_button = gr.Button("π Run Forecast", variant="primary")
|
| 383 |
+
|
| 384 |
+
with gr.Column(scale=2):
|
| 385 |
+
status_output = gr.Textbox(
|
| 386 |
+
label="π Status & Results",
|
| 387 |
+
lines=20,
|
| 388 |
+
max_lines=30
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
with gr.Row():
|
| 392 |
+
plot_output = gr.Image(label="π Visualization")
|
| 393 |
+
|
| 394 |
+
with gr.Row():
|
| 395 |
+
metrics_output = gr.Dataframe(
|
| 396 |
+
label="π Detailed Metrics",
|
| 397 |
+
headers=["Model", "MAE", "RMSE", "MAPE (%)", "RΒ²", "Dir. Acc. (%)"]
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
run_button.click(
|
| 401 |
+
fn=run_forecast,
|
| 402 |
+
inputs=[stock_input, forecast_input],
|
| 403 |
+
outputs=[status_output, plot_output, metrics_output]
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
gr.Markdown("""
|
| 407 |
+
## π How it works
|
| 408 |
+
|
| 409 |
+
1. **Data Collection**: Fetches 5-minute historical data (60 days max from Yahoo Finance)
|
| 410 |
+
2. **Volatility Calculation**: Computes rolling volatility from log returns
|
| 411 |
+
3. **Train/Test Split**: 80% training, 20% testing (out-of-sample validation)
|
| 412 |
+
4. **Model Forecasting**: Runs 4 foundation models in parallel
|
| 413 |
+
5. **Evaluation**: Compares models using MAE, RMSE, MAPE, RΒ², and Directional Accuracy
|
| 414 |
+
|
| 415 |
+
### π Metrics Explained
|
| 416 |
+
- **MAE/RMSE**: Error measures (lower is better)
|
| 417 |
+
- **MAPE**: Percentage error (lower is better)
|
| 418 |
+
- **RΒ²**: Explained variance 0-1 (higher is better, >0.5 is good)
|
| 419 |
+
- **Directional Accuracy**: Trend prediction accuracy (>50% beats random)
|
| 420 |
+
""")
|
| 421 |
+
|
| 422 |
+
if __name__ == "__main__":
|
| 423 |
+
demo.launch()
|