FreeAI / app.py
madibaalbert's picture
Update app.py
c65a8ef verified
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import time
import json
import torch
# --- CONFIGURATION OMNIGROUP ---
# On utilise un modèle compact mais puissant pour le CPU gratuit
MODEL_ID = "HuggingFaceTB/SmolLM-135M-Instruct"
print(f"Initialisation du moteur Pangea sur {MODEL_ID}...")
# Chargement du tokenizer et du modèle
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
def generate_response(prompt, max_tokens=128, temperature=0.7):
"""
Génère une réponse avec calcul du débit (tokens/s)
"""
start_time = time.time()
# Encodage
inputs = tokenizer(prompt, return_tensors="pt")
input_length = inputs.input_ids.shape[1]
# Génération
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
end_time = time.time()
# Décodage
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extraire uniquement la nouvelle réponse (après le prompt)
new_text = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
# Métriques
duration = end_time - start_time
tokens_generated = len(outputs[0]) - input_length
tokens_per_sec = round(tokens_generated / duration, 2) if duration > 0 else 0
# Construction du JSON (Format Gemini-like)
json_output = {
"id": f"omni-{int(start_time)}",
"object": "text_completion",
"created": int(start_time),
"model": MODEL_ID,
"choices": [{
"text": new_text,
"index": 0,
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": input_length,
"completion_tokens": tokens_generated,
"total_tokens": input_length + tokens_generated,
"speed": f"{tokens_per_sec} tokens/s"
}
}
return new_text, json.dumps(json_output, indent=2), f"{tokens_per_sec} t/s"
# --- INTERFACE GRADIO PRO ---
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
gr.Markdown("# 🚀 OmniGroup Pangea API v2")
gr.Markdown("Endpoint haute performance avec métriques de débit en temps réel.")
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(label="Prompt", placeholder="Posez une question à l'IA...", lines=5)
with gr.Row():
slider_tokens = gr.Slider(minimum=10, maximum=512, value=128, step=1, label="Max New Tokens")
slider_temp = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Température")
submit_btn = gr.Button("Générer l'inférence", variant="primary")
with gr.Column(scale=1):
speed_metric = gr.Label(label="Vitesse d'exécution (Débit)")
with gr.Tabs():
with gr.TabItem("Réponse Texte"):
output_text = gr.Textbox(label="Sortie Brute", lines=10)
with gr.TabItem("Réponse JSON (Format API)"):
output_json = gr.Code(label="JSON Payload", language="json")
# Mapping des fonctions
submit_btn.click(
fn=generate_response,
inputs=[input_text, slider_tokens, slider_temp],
outputs=[output_text, output_json, speed_metric],
api_name="chat" # L'endpoint sera /chat
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)