Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Healing Words E2E Translation Demo
|
| 4 |
+
|
| 5 |
+
Interactive demo for biomedical translation models covering:
|
| 6 |
+
- Amharic ↔ English
|
| 7 |
+
- Hausa ↔ English
|
| 8 |
+
- Hindi ↔ English
|
| 9 |
+
|
| 10 |
+
Usage: python demo.py
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
import gradio as gr
|
| 14 |
+
import torch
|
| 15 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 16 |
+
from peft import PeftModel
|
| 17 |
+
import yaml
|
| 18 |
+
import os
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
|
| 21 |
+
class TranslationDemo:
|
| 22 |
+
def __init__(self):
|
| 23 |
+
self.models = {}
|
| 24 |
+
self.tokenizers = {}
|
| 25 |
+
self.configs = {}
|
| 26 |
+
|
| 27 |
+
# Language pair information
|
| 28 |
+
self.language_pairs = {
|
| 29 |
+
"amh_en": {
|
| 30 |
+
"name": "Amharic ↔ English",
|
| 31 |
+
"src_lang": "Amharic (አማርኛ)",
|
| 32 |
+
"tgt_lang": "English",
|
| 33 |
+
"src_code": "amh_Ethi",
|
| 34 |
+
"tgt_code": "eng_Latn",
|
| 35 |
+
"base_model": "facebook/nllb-200-distilled-600M"
|
| 36 |
+
},
|
| 37 |
+
"ha_en": {
|
| 38 |
+
"name": "Hausa ↔ English",
|
| 39 |
+
"src_lang": "Hausa",
|
| 40 |
+
"tgt_lang": "English",
|
| 41 |
+
"src_code": "hau_Latn",
|
| 42 |
+
"tgt_code": "eng_Latn",
|
| 43 |
+
"base_model": "facebook/nllb-200-distilled-600M"
|
| 44 |
+
},
|
| 45 |
+
"hi_en": {
|
| 46 |
+
"name": "Hindi ↔ English",
|
| 47 |
+
"src_lang": "Hindi (हिन्दी)",
|
| 48 |
+
"tgt_lang": "English",
|
| 49 |
+
"src_code": "hin_Deva",
|
| 50 |
+
"tgt_code": "eng_Latn",
|
| 51 |
+
"base_model": "facebook/nllb-200-distilled-600M"
|
| 52 |
+
}
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
self.load_models()
|
| 56 |
+
|
| 57 |
+
def load_models(self):
|
| 58 |
+
"""Load all available trained models"""
|
| 59 |
+
base_dir = Path("kit/outputs")
|
| 60 |
+
|
| 61 |
+
for pair_id, pair_info in self.language_pairs.items():
|
| 62 |
+
checkpoint_dir = base_dir / pair_id / "checkpoint-best"
|
| 63 |
+
config_path = Path(f"kit/configs/{pair_id}.yaml")
|
| 64 |
+
|
| 65 |
+
if checkpoint_dir.exists() and config_path.exists():
|
| 66 |
+
try:
|
| 67 |
+
print(f"Loading {pair_info['name']} model...")
|
| 68 |
+
|
| 69 |
+
# Load config
|
| 70 |
+
with open(config_path) as f:
|
| 71 |
+
config = yaml.safe_load(f)
|
| 72 |
+
self.configs[pair_id] = config
|
| 73 |
+
|
| 74 |
+
# Load base model and tokenizer
|
| 75 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(pair_info["base_model"])
|
| 76 |
+
tokenizer = AutoTokenizer.from_pretrained(pair_info["base_model"])
|
| 77 |
+
|
| 78 |
+
# Set language codes
|
| 79 |
+
tokenizer.src_lang = pair_info["src_code"]
|
| 80 |
+
tokenizer.tgt_lang = pair_info["tgt_code"]
|
| 81 |
+
|
| 82 |
+
# Load LoRA adapter
|
| 83 |
+
model = PeftModel.from_pretrained(base_model, checkpoint_dir)
|
| 84 |
+
model.eval()
|
| 85 |
+
|
| 86 |
+
self.models[pair_id] = model
|
| 87 |
+
self.tokenizers[pair_id] = tokenizer
|
| 88 |
+
|
| 89 |
+
print(f"✓ Loaded {pair_info['name']} model")
|
| 90 |
+
|
| 91 |
+
except Exception as e:
|
| 92 |
+
print(f"✗ Failed to load {pair_info['name']} model: {e}")
|
| 93 |
+
else:
|
| 94 |
+
print(f"✗ No trained model found for {pair_info['name']}")
|
| 95 |
+
|
| 96 |
+
def translate(self, text, language_pair, direction, domain="biomedical"):
|
| 97 |
+
"""Translate text using the specified model"""
|
| 98 |
+
if not text.strip():
|
| 99 |
+
return "Please enter some text to translate."
|
| 100 |
+
|
| 101 |
+
if language_pair not in self.models:
|
| 102 |
+
return f"Model for {self.language_pairs[language_pair]['name']} is not available."
|
| 103 |
+
|
| 104 |
+
try:
|
| 105 |
+
model = self.models[language_pair]
|
| 106 |
+
tokenizer = self.tokenizers[language_pair]
|
| 107 |
+
config = self.configs[language_pair]
|
| 108 |
+
|
| 109 |
+
# Add domain tag if configured
|
| 110 |
+
if config.get("use_domain_tags", True) and domain:
|
| 111 |
+
text = f"[{domain}] {text}"
|
| 112 |
+
|
| 113 |
+
# Set tokenizer language codes based on direction
|
| 114 |
+
if direction == "to_english":
|
| 115 |
+
tokenizer.src_lang = self.language_pairs[language_pair]["src_code"]
|
| 116 |
+
tokenizer.tgt_lang = self.language_pairs[language_pair]["tgt_code"]
|
| 117 |
+
else: # from_english
|
| 118 |
+
tokenizer.src_lang = self.language_pairs[language_pair]["tgt_code"]
|
| 119 |
+
tokenizer.tgt_lang = self.language_pairs[language_pair]["src_code"]
|
| 120 |
+
|
| 121 |
+
# Tokenize input
|
| 122 |
+
inputs = tokenizer(text, return_tensors="pt", max_length=256, truncation=True)
|
| 123 |
+
|
| 124 |
+
# Generate translation
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
outputs = model.generate(
|
| 127 |
+
**inputs,
|
| 128 |
+
max_length=256,
|
| 129 |
+
num_beams=4,
|
| 130 |
+
early_stopping=True,
|
| 131 |
+
no_repeat_ngram_size=2
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# Decode output
|
| 135 |
+
translation = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 136 |
+
return translation
|
| 137 |
+
|
| 138 |
+
except Exception as e:
|
| 139 |
+
return f"Translation error: {str(e)}"
|
| 140 |
+
|
| 141 |
+
def get_example_texts(self, language_pair, direction):
|
| 142 |
+
"""Get example texts for the selected language pair and direction"""
|
| 143 |
+
examples = {
|
| 144 |
+
"amh_en": {
|
| 145 |
+
"to_english": [
|
| 146 |
+
"የጤና ሰራተኞች ኮቪድ-19 ን ለመከላከል ጭንብል መጠቀም አለባቸው።",
|
| 147 |
+
"ህመምተኛው ከፍተኛ ትኩሳት እና ሳል አለው።",
|
| 148 |
+
"መድሃኒቱን ምግብ በመብላት ይውሰዱት።"
|
| 149 |
+
],
|
| 150 |
+
"from_english": [
|
| 151 |
+
"The patient has a high fever and persistent cough.",
|
| 152 |
+
"Healthcare workers should wear masks to prevent COVID-19.",
|
| 153 |
+
"Take this medication with food for better absorption."
|
| 154 |
+
]
|
| 155 |
+
},
|
| 156 |
+
"ha_en": {
|
| 157 |
+
"to_english": [
|
| 158 |
+
"Ma'aikatan lafiya ya kamata su sa abin rufe fuska don karewa daga COVID-19.",
|
| 159 |
+
"Majiyyaci yana da zazzabi mai yawa da tari.",
|
| 160 |
+
"Ka sha wannan magani tare da abinci."
|
| 161 |
+
],
|
| 162 |
+
"from_english": [
|
| 163 |
+
"The patient needs immediate medical attention.",
|
| 164 |
+
"Wash your hands frequently to prevent infection.",
|
| 165 |
+
"The medication should be taken twice daily."
|
| 166 |
+
]
|
| 167 |
+
},
|
| 168 |
+
"hi_en": {
|
| 169 |
+
"to_english": [
|
| 170 |
+
"स्वास्थ्य कर्मचारियों को COVID-19 से बचने के लिए मास्क पहनना चाहिए।",
|
| 171 |
+
"मरीज़ को तेज़ बुखार और खांसी है।",
|
| 172 |
+
"इस दवा को भोजन के साथ लें।"
|
| 173 |
+
],
|
| 174 |
+
"from_english": [
|
| 175 |
+
"The patient requires urgent medical intervention.",
|
| 176 |
+
"Monitor vital signs every two hours.",
|
| 177 |
+
"Administer the injection intramuscularly."
|
| 178 |
+
]
|
| 179 |
+
}
|
| 180 |
+
}
|
| 181 |
+
return examples.get(language_pair, {}).get(direction, [])
|
| 182 |
+
|
| 183 |
+
# Initialize the demo
|
| 184 |
+
demo_instance = TranslationDemo()
|
| 185 |
+
|
| 186 |
+
def translate_wrapper(text, language_pair, direction, domain):
|
| 187 |
+
"""Wrapper function for Gradio interface"""
|
| 188 |
+
return demo_instance.translate(text, language_pair, direction, domain)
|
| 189 |
+
|
| 190 |
+
def update_examples(language_pair, direction):
|
| 191 |
+
"""Update example texts based on selection"""
|
| 192 |
+
examples = demo_instance.get_example_texts(language_pair, direction)
|
| 193 |
+
return gr.update(choices=examples, value=examples[0] if examples else "")
|
| 194 |
+
|
| 195 |
+
def load_example(example_text):
|
| 196 |
+
"""Load selected example into text input"""
|
| 197 |
+
return example_text
|
| 198 |
+
|
| 199 |
+
# Create Gradio interface
|
| 200 |
+
with gr.Blocks(title="Healing Words E2E Translation Demo", theme=gr.themes.Soft()) as interface:
|
| 201 |
+
|
| 202 |
+
gr.HTML("""
|
| 203 |
+
<div style="text-align: center; padding: 20px;">
|
| 204 |
+
<h1>🌍 Healing Words E2E Translation Demo</h1>
|
| 205 |
+
<p>Interactive biomedical translation for low-resource languages</p>
|
| 206 |
+
<p><em>Amharic • Hausa • Hindi ↔ English</em></p>
|
| 207 |
+
</div>
|
| 208 |
+
""")
|
| 209 |
+
|
| 210 |
+
with gr.Row():
|
| 211 |
+
with gr.Column(scale=1):
|
| 212 |
+
language_pair = gr.Dropdown(
|
| 213 |
+
choices=[
|
| 214 |
+
("Amharic ↔ English", "amh_en"),
|
| 215 |
+
("Hausa ↔ English", "ha_en"),
|
| 216 |
+
("Hindi ↔ English", "hi_en")
|
| 217 |
+
],
|
| 218 |
+
value="amh_en",
|
| 219 |
+
label="Language Pair"
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
direction = gr.Radio(
|
| 223 |
+
choices=[
|
| 224 |
+
("To English", "to_english"),
|
| 225 |
+
("From English", "from_english")
|
| 226 |
+
],
|
| 227 |
+
value="to_english",
|
| 228 |
+
label="Translation Direction"
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
domain = gr.Dropdown(
|
| 232 |
+
choices=["biomedical", "general"],
|
| 233 |
+
value="biomedical",
|
| 234 |
+
label="Domain"
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
with gr.Row():
|
| 238 |
+
with gr.Column():
|
| 239 |
+
text_input = gr.Textbox(
|
| 240 |
+
label="Input Text",
|
| 241 |
+
placeholder="Enter text to translate...",
|
| 242 |
+
lines=4
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
examples = gr.Dropdown(
|
| 246 |
+
label="Example Texts",
|
| 247 |
+
choices=[],
|
| 248 |
+
interactive=True
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
with gr.Row():
|
| 252 |
+
translate_btn = gr.Button("🔄 Translate", variant="primary")
|
| 253 |
+
clear_btn = gr.Button("🗑️ Clear")
|
| 254 |
+
|
| 255 |
+
with gr.Column():
|
| 256 |
+
translation_output = gr.Textbox(
|
| 257 |
+
label="Translation",
|
| 258 |
+
lines=6,
|
| 259 |
+
interactive=False
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# Model status information
|
| 263 |
+
with gr.Accordion("📊 Model Information", open=False):
|
| 264 |
+
model_status = []
|
| 265 |
+
for pair_id, pair_info in demo_instance.language_pairs.items():
|
| 266 |
+
status = "✅ Available" if pair_id in demo_instance.models else "❌ Not loaded"
|
| 267 |
+
model_status.append(f"**{pair_info['name']}**: {status}")
|
| 268 |
+
|
| 269 |
+
gr.Markdown("\n".join(model_status))
|
| 270 |
+
|
| 271 |
+
gr.Markdown("""
|
| 272 |
+
### About the Models
|
| 273 |
+
- **Base Model**: NLLB-200 Distilled 600M
|
| 274 |
+
- **Fine-tuning**: LoRA (Low-Rank Adaptation)
|
| 275 |
+
- **Domain**: Biomedical + General
|
| 276 |
+
- **Training Data**: Synthetic templates + Real biomedical text
|
| 277 |
+
""")
|
| 278 |
+
|
| 279 |
+
# Event handlers
|
| 280 |
+
language_pair.change(
|
| 281 |
+
fn=update_examples,
|
| 282 |
+
inputs=[language_pair, direction],
|
| 283 |
+
outputs=[examples]
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
direction.change(
|
| 287 |
+
fn=update_examples,
|
| 288 |
+
inputs=[language_pair, direction],
|
| 289 |
+
outputs=[examples]
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
examples.change(
|
| 293 |
+
fn=load_example,
|
| 294 |
+
inputs=[examples],
|
| 295 |
+
outputs=[text_input]
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
translate_btn.click(
|
| 299 |
+
fn=translate_wrapper,
|
| 300 |
+
inputs=[text_input, language_pair, direction, domain],
|
| 301 |
+
outputs=[translation_output]
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
clear_btn.click(
|
| 305 |
+
fn=lambda: ("", ""),
|
| 306 |
+
outputs=[text_input, translation_output]
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
# Initialize examples on load
|
| 310 |
+
interface.load(
|
| 311 |
+
fn=update_examples,
|
| 312 |
+
inputs=[language_pair, direction],
|
| 313 |
+
outputs=[examples]
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
if __name__ == "__main__":
|
| 317 |
+
print("Starting Healing Words E2E Translation Demo...")
|
| 318 |
+
print(f"Available models: {list(demo_instance.models.keys())}")
|
| 319 |
+
|
| 320 |
+
# Launch the interface
|
| 321 |
+
interface.launch(
|
| 322 |
+
server_name="0.0.0.0",
|
| 323 |
+
server_port=7860,
|
| 324 |
+
share=False,
|
| 325 |
+
debug=True
|
| 326 |
+
)
|