Maria
commited on
Commit
·
3c3014b
1
Parent(s):
b3c0aba
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# import spaces #[uncomment to use ZeroGPU]
|
| 7 |
+
from diffusers import DiffusionPipeline
|
| 8 |
+
from peft import PeftModel, LoraConfig
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
|
| 13 |
+
if torch.cuda.is_available():
|
| 14 |
+
torch_dtype = torch.float16
|
| 15 |
+
else:
|
| 16 |
+
torch_dtype = torch.float32
|
| 17 |
+
|
| 18 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
+
MAX_IMAGE_SIZE = 1024
|
| 20 |
+
|
| 21 |
+
LoRA_path = 'new_model'
|
| 22 |
+
|
| 23 |
+
# @spaces.GPU #[uncomment to use ZeroGPU]
|
| 24 |
+
def infer(
|
| 25 |
+
model_id,
|
| 26 |
+
prompt,
|
| 27 |
+
negative_prompt,
|
| 28 |
+
seed,
|
| 29 |
+
randomize_seed,
|
| 30 |
+
width,
|
| 31 |
+
height,
|
| 32 |
+
guidance_scale,
|
| 33 |
+
num_inference_steps,
|
| 34 |
+
progress=gr.Progress(track_tqdm=True),
|
| 35 |
+
):
|
| 36 |
+
if randomize_seed:
|
| 37 |
+
seed = random.randint(0, MAX_SEED)
|
| 38 |
+
|
| 39 |
+
generator = torch.Generator().manual_seed(seed)
|
| 40 |
+
|
| 41 |
+
if model_id == 'Maria_Lashina_LoRA':
|
| 42 |
+
adapter_name = 'a cartoonish mouse'
|
| 43 |
+
unet_sub_dir = os.path.join(LoRA_path, "unet")
|
| 44 |
+
text_encoder_sub_dir = os.path.join(LoRA_path, "text_encoder")
|
| 45 |
+
|
| 46 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
| 47 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
| 48 |
+
|
| 49 |
+
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
|
| 50 |
+
|
| 51 |
+
if torch_dtype == torch.float16:
|
| 52 |
+
pipe.unet.half()
|
| 53 |
+
pipe.text_encoder.half()
|
| 54 |
+
|
| 55 |
+
pipe.to(device)
|
| 56 |
+
|
| 57 |
+
else:
|
| 58 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
| 59 |
+
|
| 60 |
+
image = pipe(
|
| 61 |
+
prompt=prompt,
|
| 62 |
+
negative_prompt=negative_prompt,
|
| 63 |
+
guidance_scale=guidance_scale,
|
| 64 |
+
num_inference_steps=num_inference_steps,
|
| 65 |
+
width=width,
|
| 66 |
+
height=height,
|
| 67 |
+
generator=generator,
|
| 68 |
+
).images[0]
|
| 69 |
+
|
| 70 |
+
return image, seed
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
examples = [
|
| 74 |
+
"The image of a cartoonish mouse eating from a red bowl of yellow triangle chips, her cheeks are full. The mouse is gray with big pink ears, small white eyes and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
|
| 75 |
+
"The image of a cartoonish mouse with red hearts instead of eyes meaning that the mouse is in love with something. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
|
| 76 |
+
"The image of a cartoonish mouse with sunglasses and smiling. The mouse is gray with big pink ears and a black pointed nose. It has a simple design, the background color is white. The style of the image is reminiscent of a sticker or a digital illustration.",
|
| 77 |
+
]
|
| 78 |
+
|
| 79 |
+
css = """
|
| 80 |
+
#col-container {
|
| 81 |
+
margin: 0 auto;
|
| 82 |
+
max-width: 640px;
|
| 83 |
+
}
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
with gr.Blocks(css=css) as demo:
|
| 87 |
+
with gr.Column(elem_id="col-container"):
|
| 88 |
+
gr.Markdown(" # Text-to-Image Gradio Template")
|
| 89 |
+
|
| 90 |
+
MODEL_LIST = [
|
| 91 |
+
"CompVis/stable-diffusion-v1-4",
|
| 92 |
+
"stable-diffusion-v1-5/stable-diffusion-v1-5",
|
| 93 |
+
"Maria_Lashina_LoRA"
|
| 94 |
+
]
|
| 95 |
+
with gr.Row():
|
| 96 |
+
model_id = gr.Dropdown(
|
| 97 |
+
label="Model",
|
| 98 |
+
choices=MODEL_LIST
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
with gr.Row():
|
| 102 |
+
prompt = gr.Text(
|
| 103 |
+
label="Prompt",
|
| 104 |
+
show_label=False,
|
| 105 |
+
max_lines=1,
|
| 106 |
+
placeholder="Enter your prompt",
|
| 107 |
+
container=False,
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 111 |
+
|
| 112 |
+
result = gr.Image(label="Result", show_label=False)
|
| 113 |
+
|
| 114 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 115 |
+
negative_prompt = gr.Text(
|
| 116 |
+
label="Negative prompt",
|
| 117 |
+
max_lines=1,
|
| 118 |
+
placeholder="Enter a negative prompt",
|
| 119 |
+
visible=False,
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
seed = gr.Slider(
|
| 123 |
+
label="Seed",
|
| 124 |
+
minimum=0,
|
| 125 |
+
maximum=MAX_SEED,
|
| 126 |
+
step=1,
|
| 127 |
+
value=42,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
| 131 |
+
|
| 132 |
+
with gr.Row():
|
| 133 |
+
width = gr.Slider(
|
| 134 |
+
label="Width",
|
| 135 |
+
minimum=256,
|
| 136 |
+
maximum=MAX_IMAGE_SIZE,
|
| 137 |
+
step=32,
|
| 138 |
+
value=1024, # Replace with defaults that work for your model
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
height = gr.Slider(
|
| 142 |
+
label="Height",
|
| 143 |
+
minimum=256,
|
| 144 |
+
maximum=MAX_IMAGE_SIZE,
|
| 145 |
+
step=32,
|
| 146 |
+
value=1024, # Replace with defaults that work for your model
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
with gr.Row():
|
| 150 |
+
guidance_scale = gr.Slider(
|
| 151 |
+
label="Guidance scale",
|
| 152 |
+
minimum=0.0,
|
| 153 |
+
maximum=10.0,
|
| 154 |
+
step=0.1,
|
| 155 |
+
value=7.0, # Replace with defaults that work for your model
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
num_inference_steps = gr.Slider(
|
| 159 |
+
label="Number of inference steps",
|
| 160 |
+
minimum=1,
|
| 161 |
+
maximum=50,
|
| 162 |
+
step=1,
|
| 163 |
+
value=20, # Replace with defaults that work for your model
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
| 167 |
+
gr.on(
|
| 168 |
+
triggers=[run_button.click, prompt.submit],
|
| 169 |
+
fn=infer,
|
| 170 |
+
inputs=[
|
| 171 |
+
model_id,
|
| 172 |
+
prompt,
|
| 173 |
+
negative_prompt,
|
| 174 |
+
seed,
|
| 175 |
+
randomize_seed,
|
| 176 |
+
width,
|
| 177 |
+
height,
|
| 178 |
+
guidance_scale,
|
| 179 |
+
num_inference_steps,
|
| 180 |
+
],
|
| 181 |
+
outputs=[result, seed],
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
if __name__ == "__main__":
|
| 185 |
+
demo.launch()
|