Spaces:
Runtime error
Runtime error
Martin Tomov
commited on
HF IDEA-Research/grounding-dino-base
Browse files- gsl_utils.py +20 -55
gsl_utils.py
CHANGED
|
@@ -1,57 +1,32 @@
|
|
| 1 |
-
# GSL
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
| 6 |
from PIL import Image, ImageChops, ImageEnhance
|
| 7 |
import cv2
|
| 8 |
from simple_lama_inpainting import SimpleLama
|
| 9 |
-
from
|
| 10 |
-
from GroundingDINO.groundingdino.util import box_ops
|
| 11 |
-
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
| 12 |
-
from GroundingDINO.groundingdino.util.utils import clean_state_dict
|
| 13 |
-
from GroundingDINO.groundingdino.util.inference import annotate, load_image, predict
|
| 14 |
from huggingface_hub import hf_hub_download
|
| 15 |
|
| 16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 17 |
|
| 18 |
-
def
|
| 19 |
-
|
| 20 |
-
args = SLConfig.fromfile(cache_config_file)
|
| 21 |
-
args.device = device
|
| 22 |
-
model = build_model(args)
|
| 23 |
-
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 24 |
-
checkpoint = torch.load(cache_file, map_location=device)
|
| 25 |
-
model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
| 26 |
-
model.eval()
|
| 27 |
return model
|
| 28 |
|
| 29 |
-
groundingdino_model =
|
| 30 |
-
|
| 31 |
-
filename="groundingdino_swinb_cogcoor.pth",
|
| 32 |
-
ckpt_config_filename="GroundingDINO_SwinB.cfg.py",
|
| 33 |
-
device=device
|
| 34 |
-
)
|
| 35 |
-
|
| 36 |
-
sam_predictor = SamPredictor(build_sam(checkpoint='sam_vit_h_4b8939.pth').to(device))
|
| 37 |
simple_lama = SimpleLama()
|
| 38 |
|
| 39 |
def detect(image, model, text_prompt='insect . flower . cloud', box_threshold=0.15, text_threshold=0.15):
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
caption=text_prompt,
|
| 44 |
-
box_threshold=box_threshold,
|
| 45 |
-
text_threshold=text_threshold
|
| 46 |
-
)
|
| 47 |
-
annotated_frame = annotate(image_source=image, boxes=boxes, logits=logits, phrases=phrases)
|
| 48 |
-
annotated_frame = annotated_frame[..., ::-1] # BGR to RGB
|
| 49 |
-
return annotated_frame, boxes, phrases
|
| 50 |
|
| 51 |
def segment(image, sam_model, boxes):
|
| 52 |
sam_model.set_image(image)
|
| 53 |
H, W, _ = image.shape
|
| 54 |
-
boxes_xyxy =
|
|
|
|
| 55 |
transformed_boxes = sam_model.transform.apply_boxes_torch(boxes_xyxy.to(device), image.shape[:2])
|
| 56 |
masks, _, _ = sam_model.predict_torch(
|
| 57 |
point_coords=None,
|
|
@@ -81,18 +56,12 @@ def dilate_mask(mask, dilate_factor=15):
|
|
| 81 |
)
|
| 82 |
return mask
|
| 83 |
|
| 84 |
-
def gsl_process_image(
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
annotated_frame, detected_boxes, phrases = detect(image, model=groundingdino_model)
|
| 90 |
-
indices = [i for i, s in enumerate(phrases) if 'insect' in s]
|
| 91 |
-
|
| 92 |
-
# Segment insects
|
| 93 |
-
segmented_frame_masks = segment(image_source, sam_predictor, detected_boxes[indices])
|
| 94 |
|
| 95 |
-
# Combine masks
|
| 96 |
final_mask = None
|
| 97 |
for i in range(len(segmented_frame_masks) - 1):
|
| 98 |
if final_mask is None:
|
|
@@ -100,23 +69,19 @@ def gsl_process_image(local_image_path):
|
|
| 100 |
else:
|
| 101 |
final_mask = np.bitwise_or(final_mask, segmented_frame_masks[i + 1][0].cpu())
|
| 102 |
|
| 103 |
-
|
| 104 |
-
annotated_frame_with_mask = draw_mask(final_mask, image_source)
|
| 105 |
|
| 106 |
-
# Dilate mask
|
| 107 |
mask = final_mask.numpy()
|
| 108 |
mask = mask.astype(np.uint8) * 255
|
| 109 |
mask = dilate_mask(mask)
|
| 110 |
dilated_image_mask_pil = Image.fromarray(mask)
|
| 111 |
|
| 112 |
-
|
| 113 |
-
result = simple_lama(image_source, dilated_image_mask_pil)
|
| 114 |
|
| 115 |
-
|
| 116 |
-
diff = ImageChops.difference(result, Image.fromarray(image_source))
|
| 117 |
threshold = 7
|
| 118 |
diff2 = diff.convert('L').point(lambda p: 255 if p > threshold else 0).convert('1')
|
| 119 |
-
img3 = Image.new('RGB', Image.fromarray(
|
| 120 |
-
diff3 = Image.composite(Image.fromarray(
|
| 121 |
|
| 122 |
return diff3
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
from PIL import Image, ImageChops, ImageEnhance
|
| 5 |
import cv2
|
| 6 |
from simple_lama_inpainting import SimpleLama
|
| 7 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
|
| 10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 11 |
|
| 12 |
+
def load_groundingdino_model(device='cpu'):
|
| 13 |
+
model = pipeline(model="IDEA-Research/grounding-dino-base", task="zero-shot-object-detection", device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
return model
|
| 15 |
|
| 16 |
+
groundingdino_model = load_groundingdino_model(device=device)
|
| 17 |
+
sam_predictor = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
simple_lama = SimpleLama()
|
| 19 |
|
| 20 |
def detect(image, model, text_prompt='insect . flower . cloud', box_threshold=0.15, text_threshold=0.15):
|
| 21 |
+
labels = [label if label.endswith('.') else label + '.' for label in text_prompt.split('.')]
|
| 22 |
+
results = model(image, candidate_labels=labels, threshold=box_threshold)
|
| 23 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
def segment(image, sam_model, boxes):
|
| 26 |
sam_model.set_image(image)
|
| 27 |
H, W, _ = image.shape
|
| 28 |
+
boxes_xyxy = torch.Tensor(boxes) * torch.Tensor([W, H, W, H])
|
| 29 |
+
|
| 30 |
transformed_boxes = sam_model.transform.apply_boxes_torch(boxes_xyxy.to(device), image.shape[:2])
|
| 31 |
masks, _, _ = sam_model.predict_torch(
|
| 32 |
point_coords=None,
|
|
|
|
| 56 |
)
|
| 57 |
return mask
|
| 58 |
|
| 59 |
+
def gsl_process_image(image):
|
| 60 |
+
image_source = Image.fromarray(image)
|
| 61 |
+
detected_boxes = detect(image_source, groundingdino_model)
|
| 62 |
+
boxes = [[d['box']['xmin'], d['box']['ymin'], d['box']['xmax'], d['box']['ymax']] for d in detected_boxes]
|
| 63 |
+
segmented_frame_masks = segment(image, sam_predictor, boxes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
|
|
|
| 65 |
final_mask = None
|
| 66 |
for i in range(len(segmented_frame_masks) - 1):
|
| 67 |
if final_mask is None:
|
|
|
|
| 69 |
else:
|
| 70 |
final_mask = np.bitwise_or(final_mask, segmented_frame_masks[i + 1][0].cpu())
|
| 71 |
|
| 72 |
+
annotated_frame_with_mask = draw_mask(final_mask, image)
|
|
|
|
| 73 |
|
|
|
|
| 74 |
mask = final_mask.numpy()
|
| 75 |
mask = mask.astype(np.uint8) * 255
|
| 76 |
mask = dilate_mask(mask)
|
| 77 |
dilated_image_mask_pil = Image.fromarray(mask)
|
| 78 |
|
| 79 |
+
result = simple_lama(image, dilated_image_mask_pil)
|
|
|
|
| 80 |
|
| 81 |
+
diff = ImageChops.difference(result, Image.fromarray(image))
|
|
|
|
| 82 |
threshold = 7
|
| 83 |
diff2 = diff.convert('L').point(lambda p: 255 if p > threshold else 0).convert('1')
|
| 84 |
+
img3 = Image.new('RGB', Image.fromarray(image).size, (255, 236, 10))
|
| 85 |
+
diff3 = Image.composite(Image.fromarray(image), img3, diff2)
|
| 86 |
|
| 87 |
return diff3
|