Spaces:
Runtime error
Runtime error
| import transformers | |
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| tokenizer = AutoTokenizer.from_pretrained("VietAI/gpt-neo-1.3B-vietnamese-news") | |
| def load_model(model_name): | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| return model | |
| model = load_model("VietAI/gpt-neo-1.3B-vietnamese-news") | |
| def infer(input_ids, max_length): | |
| output_sequences = model.generate( | |
| input_ids=input_ids, | |
| max_length=max_length, | |
| do_sample=True, | |
| temperature=0.9, | |
| top_k=20, | |
| #top_p=top_p, | |
| #num_return_sequences=1 | |
| ) | |
| return output_sequences | |
| default_value = "Have fun!" | |
| st.title("Write with Transformers 🦄") | |
| st.write("Generate Vietnamese text from a given prompt") | |
| sent = st.text_area("Text", default_value, height = 275) | |
| max_length = st.sidebar.slider("Max Length", min_value = 10, max_value=30) | |
| #temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05) | |
| #top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 0) | |
| #top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9) | |
| encoded_prompt = tokenizer.encode(sent, add_special_tokens=False, return_tensors="pt") | |
| if encoded_prompt.size()[-1] == 0: | |
| input_ids = None | |
| else: | |
| input_ids = encoded_prompt | |
| gen_tokens = infer(encoded_prompt, max_length) | |
| gen_text = tokenizer.batch_decode(gen_tokens)[0] | |
| st.write(gen_text) |