Spaces:
Configuration error
Configuration error
Add GPU diagnostic script
Browse files
app.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
GPU Diagnostics Tool for Hugging Face Spaces
|
| 4 |
+
This script performs a comprehensive check of GPU availability and functionality.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import sys
|
| 9 |
+
import subprocess
|
| 10 |
+
import time
|
| 11 |
+
import json
|
| 12 |
+
|
| 13 |
+
print("=" * 80)
|
| 14 |
+
print("GPU DIAGNOSTICS TOOL")
|
| 15 |
+
print("=" * 80)
|
| 16 |
+
|
| 17 |
+
# Check Python version
|
| 18 |
+
print(f"Python version: {sys.version}")
|
| 19 |
+
print("-" * 80)
|
| 20 |
+
|
| 21 |
+
# Check environment variables
|
| 22 |
+
print("ENVIRONMENT VARIABLES:")
|
| 23 |
+
gpu_related_vars = [
|
| 24 |
+
"CUDA_VISIBLE_DEVICES",
|
| 25 |
+
"NVIDIA_VISIBLE_DEVICES",
|
| 26 |
+
"PYTORCH_CUDA_ALLOC_CONF",
|
| 27 |
+
"HF_HOME"
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
for var in gpu_related_vars:
|
| 31 |
+
print(f"{var}: {os.environ.get(var, 'Not set')}")
|
| 32 |
+
print("-" * 80)
|
| 33 |
+
|
| 34 |
+
# Check for nvidia-smi
|
| 35 |
+
print("CHECKING FOR NVIDIA-SMI:")
|
| 36 |
+
try:
|
| 37 |
+
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
| 38 |
+
if result.returncode == 0:
|
| 39 |
+
print("nvidia-smi is available and working!")
|
| 40 |
+
print(result.stdout)
|
| 41 |
+
else:
|
| 42 |
+
print("nvidia-smi error:")
|
| 43 |
+
print(result.stderr)
|
| 44 |
+
except Exception as e:
|
| 45 |
+
print(f"Error running nvidia-smi: {str(e)}")
|
| 46 |
+
print("-" * 80)
|
| 47 |
+
|
| 48 |
+
# Check PyTorch and CUDA
|
| 49 |
+
print("CHECKING PYTORCH AND CUDA:")
|
| 50 |
+
try:
|
| 51 |
+
import torch
|
| 52 |
+
|
| 53 |
+
print(f"PyTorch version: {torch.__version__}")
|
| 54 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
| 55 |
+
print(f"CUDA version: {torch.version.cuda if torch.cuda.is_available() else 'Not available'}")
|
| 56 |
+
|
| 57 |
+
if torch.cuda.is_available():
|
| 58 |
+
print(f"CUDA device count: {torch.cuda.device_count()}")
|
| 59 |
+
for i in range(torch.cuda.device_count()):
|
| 60 |
+
print(f"CUDA Device {i}: {torch.cuda.get_device_name(i)}")
|
| 61 |
+
print(f"Current CUDA device: {torch.cuda.current_device()}")
|
| 62 |
+
|
| 63 |
+
# Try to create and operate on a CUDA tensor
|
| 64 |
+
print("\nTesting CUDA tensor creation:")
|
| 65 |
+
try:
|
| 66 |
+
start_time = time.time()
|
| 67 |
+
x = torch.rand(1000, 1000, device="cuda" if torch.cuda.is_available() else "cpu")
|
| 68 |
+
y = x @ x # Matrix multiplication to test computation
|
| 69 |
+
torch.cuda.synchronize() # Wait for the operation to complete
|
| 70 |
+
end_time = time.time()
|
| 71 |
+
|
| 72 |
+
if torch.cuda.is_available():
|
| 73 |
+
print(f"Successfully created and operated on a CUDA tensor in {end_time - start_time:.4f} seconds")
|
| 74 |
+
else:
|
| 75 |
+
print(f"Created and operated on a CPU tensor in {end_time - start_time:.4f} seconds (CUDA not available)")
|
| 76 |
+
except Exception as e:
|
| 77 |
+
print(f"Error in tensor creation/operation: {str(e)}")
|
| 78 |
+
|
| 79 |
+
# Try to get more detailed CUDA info
|
| 80 |
+
if torch.cuda.is_available():
|
| 81 |
+
print("\nDetailed CUDA information:")
|
| 82 |
+
print(f"CUDA capability: {torch.cuda.get_device_capability(0)}")
|
| 83 |
+
print(f"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
|
| 84 |
+
print(f"CUDA arch list: {torch.cuda.get_arch_list() if hasattr(torch.cuda, 'get_arch_list') else 'Not available'}")
|
| 85 |
+
except ImportError:
|
| 86 |
+
print("PyTorch is not installed")
|
| 87 |
+
print("-" * 80)
|
| 88 |
+
|
| 89 |
+
# Create a simple GPU test with a web interface
|
| 90 |
+
print("CREATING SIMPLE GPU TEST WEB INTERFACE...")
|
| 91 |
+
try:
|
| 92 |
+
import gradio as gr
|
| 93 |
+
|
| 94 |
+
def check_gpu():
|
| 95 |
+
results = {
|
| 96 |
+
"python_version": sys.version,
|
| 97 |
+
"environment_vars": {var: os.environ.get(var, "Not set") for var in gpu_related_vars},
|
| 98 |
+
"torch_available": False,
|
| 99 |
+
"cuda_available": False
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
try:
|
| 103 |
+
import torch
|
| 104 |
+
results["torch_available"] = True
|
| 105 |
+
results["torch_version"] = torch.__version__
|
| 106 |
+
results["cuda_available"] = torch.cuda.is_available()
|
| 107 |
+
|
| 108 |
+
if torch.cuda.is_available():
|
| 109 |
+
results["cuda_version"] = torch.version.cuda
|
| 110 |
+
results["cuda_device_count"] = torch.cuda.device_count()
|
| 111 |
+
results["cuda_device_name"] = torch.cuda.get_device_name(0)
|
| 112 |
+
|
| 113 |
+
# Test tensor creation
|
| 114 |
+
start_time = time.time()
|
| 115 |
+
x = torch.rand(1000, 1000, device="cuda")
|
| 116 |
+
y = x @ x
|
| 117 |
+
torch.cuda.synchronize()
|
| 118 |
+
end_time = time.time()
|
| 119 |
+
results["tensor_test_time"] = f"{end_time - start_time:.4f} seconds"
|
| 120 |
+
results["gpu_test_passed"] = True
|
| 121 |
+
else:
|
| 122 |
+
results["gpu_test_passed"] = False
|
| 123 |
+
except Exception as e:
|
| 124 |
+
results["error"] = str(e)
|
| 125 |
+
results["gpu_test_passed"] = False
|
| 126 |
+
|
| 127 |
+
return json.dumps(results, indent=2)
|
| 128 |
+
|
| 129 |
+
demo = gr.Interface(
|
| 130 |
+
fn=check_gpu,
|
| 131 |
+
inputs=[],
|
| 132 |
+
outputs="text",
|
| 133 |
+
title="GPU Diagnostics",
|
| 134 |
+
description="Click the button to run GPU diagnostics"
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
print("Starting Gradio web interface on port 7860...")
|
| 138 |
+
demo.launch(server_name="0.0.0.0")
|
| 139 |
+
except ImportError:
|
| 140 |
+
print("Gradio not installed, skipping web interface")
|
| 141 |
+
print("Raw GPU diagnostics complete.")
|
| 142 |
+
print("-" * 80)
|