Commit
·
53b0d0a
1
Parent(s):
7950bc5
Update app.py
Browse files
app.py
CHANGED
|
@@ -134,7 +134,14 @@ def create_readme(info, downloaded_files, user_repo_id, link_civit=False, is_aut
|
|
| 134 |
|
| 135 |
trained_words = info['trainedWords'] if 'trainedWords' in info and info['trainedWords'] else []
|
| 136 |
formatted_words = ', '.join(f'`{word}`' for word in trained_words)
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
widget_content = ""
|
| 139 |
for index, (prompt, image) in enumerate(zip(downloaded_files["imagePrompt"], downloaded_files["imageName"])):
|
| 140 |
escaped_prompt = prompt.replace("'", "''")
|
|
@@ -169,9 +176,7 @@ widget:
|
|
| 169 |
|
| 170 |
{info["description"]}
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
You should use {formatted_words} to trigger the image generation.
|
| 175 |
|
| 176 |
## Download model
|
| 177 |
|
|
@@ -186,7 +191,7 @@ from diffusers import AutoPipelineForText2Image
|
|
| 186 |
import torch
|
| 187 |
|
| 188 |
pipeline = AutoPipelineForText2Image.from_pretrained('{info["baseModel"]}', torch_dtype=torch.float16).to('cuda')
|
| 189 |
-
pipeline.load_lora_weights('{user_repo_id}', weight_name='{downloaded_files["weightName"]}')
|
| 190 |
image = pipeline('{prompt if prompt else (formatted_words if formatted_words else 'Your custom prompt')}').images[0]
|
| 191 |
```
|
| 192 |
|
|
|
|
| 134 |
|
| 135 |
trained_words = info['trainedWords'] if 'trainedWords' in info and info['trainedWords'] else []
|
| 136 |
formatted_words = ', '.join(f'`{word}`' for word in trained_words)
|
| 137 |
+
if formatted_words:
|
| 138 |
+
trigger_words_section = f"""## Trigger words
|
| 139 |
+
|
| 140 |
+
You should use {formatted_words} to trigger the image generation.
|
| 141 |
+
"""
|
| 142 |
+
else:
|
| 143 |
+
trigger_words_section = ""
|
| 144 |
+
|
| 145 |
widget_content = ""
|
| 146 |
for index, (prompt, image) in enumerate(zip(downloaded_files["imagePrompt"], downloaded_files["imageName"])):
|
| 147 |
escaped_prompt = prompt.replace("'", "''")
|
|
|
|
| 176 |
|
| 177 |
{info["description"]}
|
| 178 |
|
| 179 |
+
{trigger_words_section}
|
|
|
|
|
|
|
| 180 |
|
| 181 |
## Download model
|
| 182 |
|
|
|
|
| 191 |
import torch
|
| 192 |
|
| 193 |
pipeline = AutoPipelineForText2Image.from_pretrained('{info["baseModel"]}', torch_dtype=torch.float16).to('cuda')
|
| 194 |
+
pipeline.load_lora_weights('{user_repo_id}', weight_name='{downloaded_files["weightName"][0]}')
|
| 195 |
image = pipeline('{prompt if prompt else (formatted_words if formatted_words else 'Your custom prompt')}').images[0]
|
| 196 |
```
|
| 197 |
|