musaashaikh's picture
Create app.py
04b414a verified
raw
history blame
1.51 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load GPT-2 model and tokenizer
model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
def compare_claims(claim1, claim2):
"""
Compare two insurance claims using GPT-2.
"""
prompt = f"Compare these two health insurance claims:\n\nClaim 1: {claim1}\n\nClaim 2: {claim2}\n\nDifferences and similarities:"
# Tokenize input
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
# Generate response
gen_tokens = model.generate(
input_ids,
do_sample=True,
temperature=0.7, # Adjust creativity
max_length=150, # Limit output size
pad_token_id=tokenizer.eos_token_id
)
# Decode and return output
return tokenizer.decode(gen_tokens[0], skip_special_tokens=True)
def main():
"""
Launch the Gradio interface for claim comparison.
"""
# Define the Gradio interface
interface = gr.Interface(
fn=compare_claims,
inputs=[
gr.Textbox(label="claim1", placeholder="Enter first claim description..."),
gr.Textbox(label="claim2", placeholder="Enter second claim description...")
],
outputs="text",
title="Claims Comparison",
description="Enter two claims to compare their differences."
)
# Launch the Gradio app
interface.launch()
if __name__ == "__main__":
main()