import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load GPT-2 model and tokenizer model = AutoModelForCausalLM.from_pretrained("gpt2") tokenizer = AutoTokenizer.from_pretrained("gpt2") def compare_claims(claim1, claim2): """ Compare two insurance claims using GPT-2. """ prompt = f"Compare these two health insurance claims:\n\nClaim 1: {claim1}\n\nClaim 2: {claim2}\n\nDifferences and similarities:" # Tokenize input input_ids = tokenizer(prompt, return_tensors="pt").input_ids # Generate response gen_tokens = model.generate( input_ids, do_sample=True, temperature=0.7, # Adjust creativity max_length=150, # Limit output size pad_token_id=tokenizer.eos_token_id ) # Decode and return output return tokenizer.decode(gen_tokens[0], skip_special_tokens=True) def main(): """ Launch the Gradio interface for claim comparison. """ # Define the Gradio interface interface = gr.Interface( fn=compare_claims, inputs=[ gr.Textbox(label="claim1", placeholder="Enter first claim description..."), gr.Textbox(label="claim2", placeholder="Enter second claim description...") ], outputs="text", title="Claims Comparison", description="Enter two claims to compare their differences." ) # Launch the Gradio app interface.launch() if __name__ == "__main__": main()