File size: 33,849 Bytes
8bab08d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
# file: ui/streamlit_app.py
import streamlit as st
import requests
import json
from datetime import datetime
import pandas as pd
import time
from collections import defaultdict
import os
st.set_page_config(
page_title="Lucidya MCP Prototype",
page_icon="๐ฏ",
layout="wide"
)
st.title("๐ฏ Lucidya Multi-Agent CX Platform")
st.caption("Real-time agent orchestration with Ollama streaming and MCP integration")
# Configure API base via environment; default to loopback
API_BASE = os.environ.get("API_BASE", "http://127.0.0.1:8000")
# Initialize session state
if "pipeline_logs" not in st.session_state:
st.session_state.pipeline_logs = []
if "current_prospect" not in st.session_state:
st.session_state.current_prospect = None
if "company_outputs" not in st.session_state:
st.session_state.company_outputs = {}
if "handoff_packets" not in st.session_state:
st.session_state.handoff_packets = {}
# Sidebar
with st.sidebar:
st.header("System Status")
# Health check
try:
resp = requests.get(f"{API_BASE}/health", timeout=8)
health = resp.json()
if health.get("status") == "healthy":
st.success("โ
System Healthy")
with st.expander("System Components"):
# Ollama status
ollama_status = health.get("ollama", {})
if ollama_status.get("connected"):
st.success(f"โ
Ollama: {ollama_status.get('model', 'Unknown')}")
else:
st.error("โ Ollama: Disconnected")
# MCP servers status
mcp_status = health.get("mcp", {})
for server, status in mcp_status.items():
if status == "healthy":
st.success(f"โ
MCP {server.title()}: Running")
else:
st.error(f"โ MCP {server.title()}: {status}")
# Vector store status
if health.get("vector_store"):
st.success("โ
Vector Store: Initialized")
else:
st.warning("โ ๏ธ Vector Store: Not initialized")
else:
st.error("โ System Unhealthy")
except Exception as e:
st.error(f"โ API Offline at {API_BASE}: {e}")
st.divider()
# System controls
st.header("System Controls")
col1, col2 = st.columns(2)
with col1:
if st.button("๐ Reset", help="Clear all data and reload"):
with st.spinner("Resetting..."):
try:
result = requests.post(f"{API_BASE}/reset").json()
st.success(f"โ
Reset: {result['companies_loaded']} companies")
st.session_state.company_outputs = {}
st.rerun()
except Exception as e:
st.error(f"Reset failed: {e}")
with col2:
if st.button("๐ Check", help="Verify system health"):
st.rerun()
# Main tabs
tab1, tab2, tab3, tab4 = st.tabs(["๐ Pipeline", "๐ Prospects", "๐ Details", "๐งช Dev Tools"])
# Pipeline Tab
with tab1:
st.header("Pipeline Execution")
st.markdown("Watch the complete agent orchestration workflow with MCP interactions in real-time")
# Pipeline controls
col1, col2, col3 = st.columns([3, 2, 1])
with col1:
company_ids = st.text_input(
"Company IDs",
placeholder="acme,techcorp,retailplus (or leave empty for all)",
help="Comma-separated list of company IDs to process"
)
with col2:
display_mode = st.selectbox(
"Display Mode",
["Complete Workflow", "Summary Only", "Content Only"],
help="Choose what information to display"
)
with col3:
st.write("") # Spacer
st.write("") # Spacer
if st.button("โถ๏ธ Run Pipeline", type="primary", use_container_width=True):
st.session_state.running = True
st.session_state.pipeline_logs = []
st.session_state.company_outputs = {}
# Pipeline execution display
if st.session_state.get("running"):
# Create display containers
progress_container = st.container()
with progress_container:
progress_bar = st.progress(0, text="Initializing pipeline...")
status_text = st.empty()
# Main display area
if display_mode == "Complete Workflow":
# Create columns for workflow and content
col1, col2 = st.columns([3, 2])
with col1:
st.subheader("๐ Agent Workflow & MCP Interactions")
workflow_container = st.container()
workflow_display = workflow_container.empty()
with col2:
st.subheader("๐ Generated Content by Company")
# Single placeholder updated on each token
content_area = st.empty()
elif display_mode == "Content Only":
st.subheader("๐ Generated Content by Company")
content_area = st.empty()
else: # Summary Only
st.subheader("๐ Execution Summary")
summary_container = st.empty()
# Process the pipeline stream
try:
# Parse company IDs
ids = None
if company_ids:
ids = [id.strip() for id in company_ids.split(",") if id.strip()]
# Start streaming
response = requests.post(
f"{API_BASE}/run",
json={"company_ids": ids},
stream=True,
timeout=60
)
# Initialize tracking variables
workflow_logs = []
current_agent = None
current_company = None
agents_completed = set()
total_agents = 8
company_outputs = defaultdict(lambda: {"summary": "", "email": "", "status": "processing"})
mcp_interactions = []
# Helper to render the accumulated content once per update
def render_content():
if display_mode == "Summary Only":
return
lines = []
for company in sorted(company_outputs.keys()):
outputs = company_outputs[company]
lines.append(f"### ๐ข {company}\n")
# Summary
lines.append("**๐ Summary**")
summary_text = outputs.get("final_summary") or outputs.get("summary") or ""
lines.append(summary_text if summary_text else "_No summary yet_\n")
# Email
lines.append("**โ๏ธ Email Draft**")
email_val = outputs.get("final_email") or outputs.get("email") or ""
if isinstance(email_val, dict):
subj = email_val.get("subject", "")
body = email_val.get("body", "")
lines.append(f"Subject: {subj}\n\n{body}\n")
elif email_val:
lines.append(f"{email_val}\n")
else:
lines.append("_No email yet_\n")
lines.append("\n---\n")
# Overwrite the single placeholder with the assembled markdown
content_area.markdown("\n".join(lines))
# Process stream
for line in response.iter_lines():
if line:
try:
event = json.loads(line)
# Track current company
payload = event.get("payload", {})
if payload.get("company_name"):
current_company = payload["company_name"]
elif payload.get("company"):
current_company = payload["company"]
elif payload.get("prospect", {}).get("company", {}).get("name"):
current_company = payload["prospect"]["company"]["name"]
# Update progress
if event.get("agent"):
current_agent = event["agent"]
if event["type"] == "agent_end":
agents_completed.add(current_agent)
progress = len(agents_completed) / total_agents
progress_bar.progress(progress,
text=f"Processing: {current_agent.title()} ({len(agents_completed)}/{total_agents})")
# Handle different event types
if event["type"] == "agent_start":
workflow_logs.append({
"โฐ Time": datetime.now().strftime("%H:%M:%S"),
"๐ค Agent": event["agent"].title(),
"๐ Action": "โถ๏ธ Started",
"๐ข Company": current_company or "All",
"๐ฌ Details": event["message"]
})
status_text.info(f"๐ {event['agent'].title()}: {event['message']}")
elif event["type"] == "mcp_call":
mcp_server = event["payload"].get("mcp_server", "unknown")
method = event["payload"].get("method", "unknown")
workflow_logs.append({
"โฐ Time": datetime.now().strftime("%H:%M:%S"),
"๐ค Agent": current_agent.title() if current_agent else "System",
"๐ Action": f"๐ MCP Call",
"๐ข Company": current_company or "All",
"๐ฌ Details": f"โ {mcp_server.upper()}: {method}"
})
elif event["type"] == "mcp_response":
mcp_server = event["payload"].get("mcp_server", "unknown")
workflow_logs.append({
"โฐ Time": datetime.now().strftime("%H:%M:%S"),
"๐ค Agent": current_agent.title() if current_agent else "System",
"๐ Action": f"๐ฅ MCP Response",
"๐ข Company": current_company or "All",
"๐ฌ Details": f"โ {mcp_server.upper()}: {event['message']}"
})
elif event["type"] == "agent_end":
details = event["message"]
if event.get("payload"):
payload = event["payload"]
extra = []
if "facts_count" in payload:
extra.append(f"Facts: {payload['facts_count']}")
if "contacts_count" in payload:
extra.append(f"Contacts: {payload['contacts_count']}")
if "fit_score" in payload:
extra.append(f"Score: {payload['fit_score']:.2f}")
if "thread_id" in payload:
extra.append(f"Thread: {payload['thread_id'][:8]}...")
if extra:
details += f" ({', '.join(extra)})"
workflow_logs.append({
"โฐ Time": datetime.now().strftime("%H:%M:%S"),
"๐ค Agent": event["agent"].title(),
"๐ Action": "โ
Completed",
"๐ข Company": current_company or "All",
"๐ฌ Details": details
})
elif event["type"] == "company_start":
company = event["payload"]["company"]
industry = event["payload"].get("industry", "Unknown")
size = event["payload"].get("size", 0)
workflow_logs.append({
"โฐ Time": datetime.now().strftime("%H:%M:%S"),
"๐ค Agent": "Writer",
"๐ Action": "๐ข Company",
"๐ข Company": company,
"๐ฌ Details": f"Starting: {company} ({industry}, {size} employees)"
})
elif event["type"] == "llm_token":
payload = event.get("payload", {})
token = payload.get("token", "")
token_type = payload.get("type", "")
company = payload.get("company_name") or payload.get("company") or current_company
if company and display_mode != "Summary Only":
if token_type == "summary":
company_outputs[company]["summary"] += token
elif token_type == "email":
company_outputs[company]["email"] += token
# Update the single content area
render_content()
elif event["type"] == "llm_done":
payload = event.get("payload", {})
company = payload.get("company_name") or payload.get("company") or current_company
if company:
company_outputs[company]["status"] = "completed"
if "summary" in payload:
company_outputs[company]["final_summary"] = payload["summary"]
if "email" in payload:
company_outputs[company]["final_email"] = payload["email"]
render_content()
workflow_logs.append({
"โฐ Time": datetime.now().strftime("%H:%M:%S"),
"๐ค Agent": "Writer",
"๐ Action": "โ
Generated",
"๐ข Company": company or "Unknown",
"๐ฌ Details": "Content generation complete"
})
elif event["type"] == "policy_block":
workflow_logs.append({
"โฐ Time": datetime.now().strftime("%H:%M:%S"),
"๐ค Agent": "Compliance",
"๐ Action": "โ Blocked",
"๐ข Company": current_company or "Unknown",
"๐ฌ Details": event["payload"].get("reason", "Policy violation")
})
elif event["type"] == "policy_pass":
workflow_logs.append({
"โฐ Time": datetime.now().strftime("%H:%M:%S"),
"๐ค Agent": "Compliance",
"๐ Action": "โ
Passed",
"๐ข Company": current_company or "Unknown",
"๐ฌ Details": "All compliance checks passed"
})
# Update displays based on mode
if display_mode == "Complete Workflow":
# Update workflow display
if workflow_logs:
df = pd.DataFrame(workflow_logs[-50:]) # Show last 50 entries
workflow_display.dataframe(
df,
use_container_width=True,
hide_index=True,
height=400
)
# Content display handled by render_content()
elif display_mode == "Content Only":
# Content display handled by render_content()
pass
else: # Summary Only
# Show high-level statistics
summary_stats = {
"Total Events": len(workflow_logs),
"Agents Run": len(agents_completed),
"Companies Processed": len(set(log.get("๐ข Company", "Unknown") for log in workflow_logs if log.get("๐ข Company") != "All")),
"MCP Calls": len([log for log in workflow_logs if "MCP Call" in log.get("๐ Action", "")]),
"MCP Responses": len([log for log in workflow_logs if "MCP Response" in log.get("๐ Action", "")]),
"Current Agent": current_agent.title() if current_agent else "None",
"Current Company": current_company or "None"
}
summary_container.json(summary_stats)
except json.JSONDecodeError:
continue
except Exception as e:
st.error(f"Error processing event: {e}")
# Pipeline complete
progress_bar.progress(1.0, text="โ
Pipeline Complete!")
status_text.success("โ
Pipeline execution completed successfully!")
# Store outputs in session state
st.session_state.pipeline_logs = workflow_logs
st.session_state.company_outputs = dict(company_outputs)
# Show final summary
st.divider()
st.subheader("๐ Execution Summary")
# Calculate statistics
companies_processed = set(log.get("๐ข Company", "Unknown") for log in workflow_logs if log.get("๐ข Company") not in ["All", None])
mcp_calls = [log for log in workflow_logs if "MCP Call" in log.get("๐ Action", "")]
mcp_responses = [log for log in workflow_logs if "MCP Response" in log.get("๐ Action", "")]
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.metric("Total Events", len(workflow_logs))
with col2:
st.metric("Companies", len(companies_processed))
with col3:
st.metric("Agents Run", len(agents_completed))
with col4:
st.metric("MCP Calls", len(mcp_calls))
with col5:
st.metric("MCP Responses", len(mcp_responses))
# Show MCP interaction summary
if mcp_calls or mcp_responses:
with st.expander("๐ MCP Server Interactions"):
mcp_servers = defaultdict(int)
for log in workflow_logs:
if "MCP" in log.get("๐ Action", ""):
details = log.get("๐ฌ Details", "")
for server in ["STORE", "SEARCH", "EMAIL", "CALENDAR", "VECTOR", "OLLAMA"]:
if server in details.upper():
mcp_servers[server] += 1
if mcp_servers:
mcp_df = pd.DataFrame(
[(server, count) for server, count in mcp_servers.items()],
columns=["MCP Server", "Interactions"]
)
st.dataframe(mcp_df, hide_index=True)
except requests.exceptions.Timeout:
st.error("โฑ๏ธ Pipeline timeout - please check if Ollama is running")
except Exception as e:
st.error(f"Pipeline error: {str(e)}")
finally:
st.session_state.running = False
# Show stored outputs if available
elif st.session_state.company_outputs:
st.subheader("๐ Previous Execution Results")
company_outputs = st.session_state.company_outputs
if company_outputs:
# Create tabs for each company
company_names = list(company_outputs.keys())
if company_names:
tabs = st.tabs([f"๐ข {name}" for name in company_names])
for i, (company, outputs) in enumerate(company_outputs.items()):
with tabs[i]:
col1, col2 = st.columns(2)
with col1:
st.markdown("### ๐ Summary")
if outputs.get("final_summary"):
st.markdown(outputs["final_summary"])
elif outputs.get("summary"):
st.markdown(outputs["summary"])
else:
st.info("No summary available")
with col2:
st.markdown("### โ๏ธ Email Draft")
if outputs.get("final_email"):
email = outputs["final_email"]
if isinstance(email, dict):
st.write(f"**Subject:** {email.get('subject', '')}")
st.markdown(f"**Body:**\n{email.get('body', '')}")
else:
st.markdown(email)
elif outputs.get("email"):
st.markdown(outputs["email"])
else:
st.info("No email available")
# Prospects Tab
with tab2:
st.header("Prospects Overview")
st.markdown("View all prospects and their current status in the pipeline")
# Refresh controls
col1, col2 = st.columns([6, 1])
with col2:
if st.button("๐ Refresh", use_container_width=True):
st.rerun()
try:
prospects_data = requests.get(f"{API_BASE}/prospects").json()
if prospects_data["count"] > 0:
# Metrics row
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Prospects", prospects_data["count"])
with col2:
ready = sum(1 for p in prospects_data["prospects"]
if p["status"] == "ready_for_handoff")
st.metric("Ready for Handoff", ready)
with col3:
blocked = sum(1 for p in prospects_data["prospects"]
if p["status"] in ["blocked", "dropped"])
st.metric("Blocked/Dropped", blocked)
with col4:
scores = [p["fit_score"] for p in prospects_data["prospects"] if p["fit_score"] > 0]
avg_score = sum(scores) / len(scores) if scores else 0
st.metric("Avg Fit Score", f"{avg_score:.2f}")
st.divider()
# Prospect table with enhanced status display
prospects_df = pd.DataFrame(prospects_data["prospects"])
# Status mapping with colors and descriptions
status_info = {
"new": ("๐", "New", "Just discovered"),
"enriched": ("๐", "Enriched", "Facts gathered"),
"contacted": ("๐ฅ", "Contacted", "Contacts identified"),
"scored": ("๐", "Scored", "Fit score calculated"),
"drafted": ("๐", "Drafted", "Content generated"),
"compliant": ("โ
", "Compliant", "Passed compliance"),
"sequenced": ("๐ฎ", "Sequenced", "Email sent"),
"ready_for_handoff": ("๐ฏ", "Ready", "Ready for sales"),
"dropped": ("โ", "Dropped", "Low score"),
"blocked": ("๐ซ", "Blocked", "Failed requirements")
}
# Format the dataframe
display_data = []
for _, row in prospects_df.iterrows():
status = row["status"]
icon, label, desc = status_info.get(status, ("โ", status, "Unknown"))
display_data.append({
"Company": row["company"],
"Status": f"{icon} {label}",
"Description": desc,
"Fit Score": f"{row['fit_score']:.2f}" if row['fit_score'] > 0 else "N/A",
"Contacts": row["contacts"],
"Facts": row["facts"],
"ID": row["id"]
})
display_df = pd.DataFrame(display_data)
# Show the table
st.dataframe(
display_df,
use_container_width=True,
hide_index=True,
column_config={
"Fit Score": st.column_config.NumberColumn(
format="%.2f",
min_value=0,
max_value=1
),
"Contacts": st.column_config.NumberColumn(format="%d"),
"Facts": st.column_config.NumberColumn(format="%d")
}
)
else:
st.info("No prospects found. Run the pipeline to generate prospects.")
except Exception as e:
st.error(f"Could not load prospects: {e}")
# Details Tab (keeping existing implementation)
with tab3:
st.header("Prospect Details")
st.markdown("Deep dive into individual prospect information")
# Prospect selector
col1, col2 = st.columns([3, 1])
with col1:
prospect_id = st.text_input(
"Prospect ID",
placeholder="Enter prospect ID (e.g., acme, techcorp, retailplus)",
value=st.session_state.current_prospect["id"] if st.session_state.current_prospect else ""
)
with col2:
st.write("") # Spacer
search_btn = st.button("๐ Load Details", use_container_width=True)
if prospect_id and (search_btn or st.session_state.current_prospect):
try:
data = requests.get(f"{API_BASE}/prospects/{prospect_id}", timeout=10).json()
if "error" not in data:
prospect = data["prospect"]
thread = data.get("thread")
# Persist current prospect so subsequent button clicks don't clear the view
st.session_state.current_prospect = prospect
col1, col2 = st.columns(2)
with col1:
st.subheader("๐ Prospect Info")
st.json({
"Company": prospect["company"]["name"],
"Status": prospect["status"],
"Fit Score": prospect["fit_score"],
"Contacts": len(prospect["contacts"]),
"Facts": len(prospect["facts"])
})
if prospect.get("summary"):
st.subheader("๐ Summary")
st.markdown(prospect["summary"])
with col2:
if prospect.get("email_draft"):
st.subheader("โ๏ธ Email Draft")
st.write(f"**Subject:** {prospect['email_draft']['subject']}")
st.markdown(prospect["email_draft"]["body"])
if thread:
st.subheader("๐ฌ Thread")
for msg in thread.get("messages", []):
with st.expander(f"{msg['direction']}: {msg['subject']}"):
st.write(msg["body"])
st.caption(f"Sent: {msg['sent_at']}")
# Handoff section (persistent across reruns)
st.subheader("๐ฆ Handoff")
handoff = st.session_state.handoff_packets.get(prospect_id)
if st.button("Get Handoff Packet", key=f"handoff_{prospect_id}"):
try:
resp_h = requests.get(f"{API_BASE}/handoff/{prospect_id}", timeout=15)
if resp_h.status_code == 200:
handoff = resp_h.json()
st.session_state.handoff_packets[prospect_id] = handoff
else:
# Surface API error detail
try:
detail = resp_h.json().get("detail")
except Exception:
detail = resp_h.text
st.warning(f"Handoff not available: {detail}")
except Exception as e:
st.error(f"Could not get handoff: {e}")
# Render cached handoff if available
if handoff:
cols = st.columns(2)
with cols[0]:
st.markdown("**Calendar Slots**")
for slot in handoff.get("calendar_slots", []):
st.write(f"โข {slot.get('start_iso','')[:16]}")
with cols[1]:
st.markdown("**Generated At**")
st.write(handoff.get("generated_at", "Unknown"))
st.markdown("**Full Packet**")
st.json(handoff)
except Exception as e:
st.error(f"Could not load prospect: {e}")
# Dev Tools Tab (keeping existing implementation)
with tab4:
st.header("Developer Tools")
st.subheader("๐งช Writer Streaming Test")
test_company_id = st.text_input("Test Company ID", value="acme")
if st.button("Test Writer Stream"):
with st.spinner("Streaming from Writer agent..."):
output_container = st.empty()
full_text = ""
try:
response = requests.post(
f"{API_BASE}/writer/stream",
json={"company_id": test_company_id},
stream=True
)
for line in response.iter_lines():
if line:
try:
event = json.loads(line)
if event.get("type") == "llm_token":
token = event["payload"].get("token", "")
full_text += token
output_container.markdown(full_text)
elif event.get("type") == "llm_done":
st.success("โ
Generation complete")
# Show final artifacts
if "summary" in event["payload"]:
with st.expander("Final Summary"):
st.markdown(event["payload"]["summary"])
if "email" in event["payload"]:
with st.expander("Final Email"):
email = event["payload"]["email"]
st.write(f"**Subject:** {email.get('subject', '')}")
st.markdown(email.get("body", ""))
except json.JSONDecodeError:
continue
except Exception as e:
st.error(f"Stream test failed: {e}")
st.divider()
st.subheader("๐ก API Endpoints")
endpoints = [
("GET /health", "System health check"),
("POST /run", "Run full pipeline (streaming)"),
("POST /writer/stream", "Test Writer streaming"),
("GET /prospects", "List all prospects"),
("GET /prospects/{id}", "Get prospect details"),
("GET /handoff/{id}", "Get handoff packet"),
("POST /reset", "Reset system")
]
for endpoint, desc in endpoints:
st.code(f"{endpoint} - {desc}")
|