Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==============================================================================
|
| 2 |
+
# Gradio App for Comparing SFT vs. PPO-Aligned GPT-2 Models
|
| 3 |
+
#
|
| 4 |
+
# This script creates a web interface where users can input a prompt and see the
|
| 5 |
+
# generated responses from both the baseline Supervised Fine-Tuned (SFT) model
|
| 6 |
+
# and the final, RLHF-aligned (PPO) model. This provides a direct, interactive
|
| 7 |
+
# comparison, showcasing the impact of the alignment process.
|
| 8 |
+
#
|
| 9 |
+
# Author: Nabeel Shan
|
| 10 |
+
# GitHub: https://github.com/nabeelshan78/reinforcement-learning-human-feedback-scratch
|
| 11 |
+
# ==============================================================================
|
| 12 |
+
|
| 13 |
+
import gradio as gr
|
| 14 |
+
import torch
|
| 15 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 16 |
+
|
| 17 |
+
# --- 1. Configuration ---
|
| 18 |
+
# Define the model repository ID and the subfolders for each model
|
| 19 |
+
MODEL_ID = "nabeelshan/rlhf-gpt2-pipeline"
|
| 20 |
+
SFT_SUBFOLDER = "sft_full_final"
|
| 21 |
+
PPO_SUBFOLDER = "ppo_aligned_final"
|
| 22 |
+
|
| 23 |
+
# Set device for inference (GPU if available, otherwise CPU)
|
| 24 |
+
DEVICE = 0 if torch.cuda.is_available() else -1
|
| 25 |
+
|
| 26 |
+
# --- 2. Load Models and Tokenizers ---
|
| 27 |
+
print("Loading models... This may take a moment.")
|
| 28 |
+
|
| 29 |
+
# Load the Supervised Fine-Tuned (SFT) model - our "before" model
|
| 30 |
+
sft_model = AutoModelForCausalLM.from_pretrained(MODEL_ID, subfolder=SFT_SUBFOLDER)
|
| 31 |
+
sft_tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, subfolder=SFT_SUBFOLDER)
|
| 32 |
+
|
| 33 |
+
# Load the final PPO-aligned model - our "after" model
|
| 34 |
+
ppo_model = AutoModelForCausalLM.from_pretrained(MODEL_ID, subfolder=PPO_SUBFOLDER)
|
| 35 |
+
ppo_tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, subfolder=PPO_SUBFOLDER)
|
| 36 |
+
|
| 37 |
+
print("Models loaded successfully!")
|
| 38 |
+
|
| 39 |
+
# --- 3. Create Text Generation Pipelines ---
|
| 40 |
+
# Create a pipeline for each model to simplify text generation
|
| 41 |
+
sft_pipeline = pipeline("text-generation", model=sft_model, tokenizer=sft_tokenizer, device=DEVICE)
|
| 42 |
+
ppo_pipeline = pipeline("text-generation", model=ppo_model, tokenizer=ppo_tokenizer, device=DEVICE)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# --- 4. Define the Core Generation Function ---
|
| 46 |
+
def generate_responses(prompt):
|
| 47 |
+
"""
|
| 48 |
+
Generates responses from both the SFT and PPO models for a given prompt.
|
| 49 |
+
"""
|
| 50 |
+
print(f"Received prompt: {prompt}")
|
| 51 |
+
|
| 52 |
+
# Common generation parameters
|
| 53 |
+
generation_kwargs = {
|
| 54 |
+
"max_new_tokens": 100,
|
| 55 |
+
"num_return_sequences": 1,
|
| 56 |
+
"pad_token_id": sft_tokenizer.eos_token_id, # Can use either tokenizer's pad token
|
| 57 |
+
"top_k": 50,
|
| 58 |
+
"top_p": 0.95,
|
| 59 |
+
"do_sample": True,
|
| 60 |
+
"temperature": 0.8,
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
# Generate from SFT model
|
| 64 |
+
sft_output = sft_pipeline(prompt, **generation_kwargs)
|
| 65 |
+
sft_response = sft_output[0]['generated_text']
|
| 66 |
+
|
| 67 |
+
# Generate from PPO model
|
| 68 |
+
ppo_output = ppo_pipeline(prompt, **generation_kwargs)
|
| 69 |
+
ppo_response = ppo_output[0]['generated_text']
|
| 70 |
+
|
| 71 |
+
print(f"SFT Response: {sft_response}")
|
| 72 |
+
print(f"PPO Response: {ppo_response}")
|
| 73 |
+
|
| 74 |
+
return sft_response, ppo_response
|
| 75 |
+
|
| 76 |
+
# --- 5. Build the Gradio Interface ---
|
| 77 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 78 |
+
gr.Markdown(
|
| 79 |
+
"""
|
| 80 |
+
# 🚀 RLHF-Aligned GPT-2: A Before & After Comparison
|
| 81 |
+
This demo showcases the impact of Reinforcement Learning from Human Feedback (RLHF) on a GPT-2 model.
|
| 82 |
+
Enter a prompt and see the difference between the initial **Supervised Fine-Tuned (SFT) Model** and the **final PPO-Aligned Model**.
|
| 83 |
+
The PPO model should provide more helpful, structured, and aligned responses.
|
| 84 |
+
|
| 85 |
+
- **GitHub Repository:** [nabeelshan78/reinforcement-learning-human-feedback-scratch](https://github.com/nabeelshan78/reinforcement-learning-human-feedback-scratch)
|
| 86 |
+
- **Model Card:** [nabeelshan/rlhf-gpt2-pipeline](https://huggingface.co/nabeelshan/rlhf-gpt2-pipeline)
|
| 87 |
+
"""
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
with gr.Row():
|
| 91 |
+
prompt_input = gr.Textbox(
|
| 92 |
+
label="Enter your prompt here:",
|
| 93 |
+
placeholder="e.g., How do I start learning Python?",
|
| 94 |
+
lines=2
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
generate_button = gr.Button("Generate Responses", variant="primary")
|
| 98 |
+
|
| 99 |
+
with gr.Row():
|
| 100 |
+
with gr.Column():
|
| 101 |
+
gr.Markdown("### 💬 Supervised Fine-Tuned Model (Baseline)")
|
| 102 |
+
sft_output_textbox = gr.Textbox(label="SFT Output", lines=10, interactive=False)
|
| 103 |
+
with gr.Column():
|
| 104 |
+
gr.Markdown("### 🏆 PPO-Aligned Model (Final)")
|
| 105 |
+
ppo_output_textbox = gr.Textbox(label="PPO Output", lines=10, interactive=False)
|
| 106 |
+
|
| 107 |
+
gr.Examples(
|
| 108 |
+
examples=[
|
| 109 |
+
"How do I price my artwork?",
|
| 110 |
+
"What kind of diet should I follow to lose weight healthily?",
|
| 111 |
+
"Can you explain what a neural network is in simple terms?",
|
| 112 |
+
"Write a short, encouraging note to someone starting a new job.",
|
| 113 |
+
],
|
| 114 |
+
inputs=prompt_input,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# Connect the button to the generation function
|
| 118 |
+
generate_button.click(
|
| 119 |
+
fn=generate_responses,
|
| 120 |
+
inputs=prompt_input,
|
| 121 |
+
outputs=[sft_output_textbox, ppo_output_textbox]
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# --- 6. Launch the App ---
|
| 125 |
+
if __name__ == "__main__":
|
| 126 |
+
demo.launch()
|