Spaces:
Runtime error
Runtime error
| from typing import Optional, Tuple | |
| import torch | |
| import torch.nn as nn | |
| class SiglipVisionConfig: | |
| def __init__( | |
| self, | |
| hidden_size=768, | |
| intermediate_size=3072, | |
| num_hidden_layers=12, | |
| num_attention_heads=12, | |
| num_channels=3, | |
| image_size=224, | |
| patch_size=16, | |
| layer_norm_eps=1e-6, | |
| attention_dropout=0.0, | |
| num_image_tokens: int = None, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.num_channels = num_channels | |
| self.patch_size = patch_size | |
| self.image_size = image_size | |
| self.attention_dropout = attention_dropout | |
| self.layer_norm_eps = layer_norm_eps | |
| self.num_image_tokens = num_image_tokens | |
| class SiglipVisionEmbeddings(nn.Module): | |
| def __init__(self, config: SiglipVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| self.embed_dim = config.hidden_size | |
| self.image_size = config.image_size | |
| self.patch_size = config.patch_size | |
| self.patch_embedding = nn.Conv2d( | |
| in_channels=config.num_channels, | |
| out_channels=self.embed_dim, | |
| kernel_size=self.patch_size, | |
| stride=self.patch_size, | |
| padding="valid", # This indicates no padding is added | |
| ) | |
| self.num_patches = (self.image_size // self.patch_size) ** 2 | |
| self.num_positions = self.num_patches | |
| self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
| self.register_buffer( | |
| "position_ids", | |
| torch.arange(self.num_positions).expand((1, -1)), | |
| persistent=False, | |
| ) | |
| def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
| _, _, height, width = ( | |
| pixel_values.shape | |
| ) # [Batch_Size, Channels, Height, Width] | |
| # Convolve the `patch_size` kernel over the image, with no overlapping patches since the stride is equal to the kernel size | |
| # The output of the convolution will have shape [Batch_Size, Embed_Dim, Num_Patches_H, Num_Patches_W] | |
| # where Num_Patches_H = height // patch_size and Num_Patches_W = width // patch_size | |
| patch_embeds = self.patch_embedding(pixel_values) | |
| # [Batch_Size, Embed_Dim, Num_Patches_H, Num_Patches_W] -> [Batch_Size, Embed_Dim, Num_Patches] | |
| # where Num_Patches = Num_Patches_H * Num_Patches_W | |
| embeddings = patch_embeds.flatten(2) | |
| # [Batch_Size, Embed_Dim, Num_Patches] -> [Batch_Size, Num_Patches, Embed_Dim] | |
| embeddings = embeddings.transpose(1, 2) | |
| # Add position embeddings to each patch. Each positional encoding is a vector of size [Embed_Dim] | |
| embeddings = embeddings + self.position_embedding(self.position_ids) | |
| # [Batch_Size, Num_Patches, Embed_Dim] | |
| return embeddings | |
| class SiglipAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.embed_dim = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.embed_dim // self.num_heads | |
| self.scale = self.head_dim**-0.5 # Equivalent to 1 / sqrt(self.head_dim) | |
| self.dropout = config.attention_dropout | |
| self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
| # hidden_states: [Batch_Size, Num_Patches, Embed_Dim] | |
| batch_size, seq_len, _ = hidden_states.size() | |
| # query_states: [Batch_Size, Num_Patches, Embed_Dim] | |
| query_states = self.q_proj(hidden_states) | |
| # key_states: [Batch_Size, Num_Patches, Embed_Dim] | |
| key_states = self.k_proj(hidden_states) | |
| # value_states: [Batch_Size, Num_Patches, Embed_Dim] | |
| value_states = self.v_proj(hidden_states) | |
| # query_states: [Batch_Size, Num_Heads, Num_Patches, Head_Dim] | |
| query_states = query_states.view( | |
| batch_size, seq_len, self.num_heads, self.head_dim | |
| ).transpose(1, 2) | |
| key_states = key_states.view( | |
| batch_size, seq_len, self.num_heads, self.head_dim | |
| ).transpose(1, 2) | |
| value_states = value_states.view( | |
| batch_size, seq_len, self.num_heads, self.head_dim | |
| ).transpose(1, 2) | |
| # Calculate the attention using the formula Q * K^T / sqrt(d_k). attn_weights: [Batch_Size, Num_Heads, Num_Patches, Num_Patches] | |
| attn_weights = ( | |
| torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale | |
| ) | |
| if attn_weights.size() != (batch_size, self.num_heads, seq_len, seq_len): | |
| raise ValueError( | |
| f"Attention weights should be of size {(batch_size, self.num_heads, seq_len, seq_len)}, but is" | |
| f" {attn_weights.size()}" | |
| ) | |
| # Apply the softmax row-wise. attn_weights: [Batch_Size, Num_Heads, Num_Patches, Num_Patches] | |
| attn_weights = nn.functional.softmax( | |
| attn_weights, dim=-1, dtype=torch.float32 | |
| ).to(query_states.dtype) | |
| # Apply dropout only during training | |
| attn_weights = nn.functional.dropout( | |
| attn_weights, p=self.dropout, training=self.training | |
| ) | |
| # Multiply the attention weights by the value states. attn_output: [Batch_Size, Num_Heads, Num_Patches, Head_Dim] | |
| attn_output = torch.matmul(attn_weights, value_states) | |
| if attn_output.size() != (batch_size, self.num_heads, seq_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(batch_size, self.num_heads, seq_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| # [Batch_Size, Num_Heads, Num_Patches, Head_Dim] -> [Batch_Size, Num_Patches, Num_Heads, Head_Dim] | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| # [Batch_Size, Num_Patches, Num_Heads, Head_Dim] -> [Batch_Size, Num_Patches, Embed_Dim] | |
| attn_output = attn_output.reshape(batch_size, seq_len, self.embed_dim) | |
| # [Batch_Size, Num_Patches, Embed_Dim] | |
| attn_output = self.out_proj(attn_output) | |
| return attn_output, attn_weights | |
| class SiglipMLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
| self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Intermediate_Size] | |
| hidden_states = self.fc1(hidden_states) | |
| # hidden_states: [Batch_Size, Num_Patches, Intermediate_Size] | |
| hidden_states = nn.functional.gelu(hidden_states, approximate="tanh") | |
| # [Batch_Size, Num_Patches, Intermediate_Size] -> [Batch_Size, Num_Patches, Embed_Dim] | |
| hidden_states = self.fc2(hidden_states) | |
| return hidden_states | |
| class SiglipEncoderLayer(nn.Module): | |
| def __init__(self, config: SiglipVisionConfig): | |
| super().__init__() | |
| self.embed_dim = config.hidden_size | |
| self.self_attn = SiglipAttention(config) | |
| self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| self.mlp = SiglipMLP(config) | |
| self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| # Ignore copy | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| # residual: [Batch_Size, Num_Patches, Embed_Dim] | |
| residual = hidden_states | |
| # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim] | |
| hidden_states = self.layer_norm1(hidden_states) | |
| # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim] | |
| hidden_states, _ = self.self_attn(hidden_states=hidden_states) | |
| # [Batch_Size, Num_Patches, Embed_Dim] | |
| hidden_states = residual + hidden_states | |
| # residual: [Batch_Size, Num_Patches, Embed_Dim] | |
| residual = hidden_states | |
| # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim] | |
| hidden_states = self.layer_norm2(hidden_states) | |
| # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim] | |
| hidden_states = self.mlp(hidden_states) | |
| # [Batch_Size, Num_Patches, Embed_Dim] | |
| hidden_states = residual + hidden_states | |
| return hidden_states | |
| class SiglipEncoder(nn.Module): | |
| def __init__(self, config: SiglipVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| self.layers = nn.ModuleList( | |
| [SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)] | |
| ) | |
| # Ignore copy | |
| def forward(self, inputs_embeds: torch.Tensor) -> torch.Tensor: | |
| # inputs_embeds: [Batch_Size, Num_Patches, Embed_Dim] | |
| hidden_states = inputs_embeds | |
| for encoder_layer in self.layers: | |
| # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim] | |
| hidden_states = encoder_layer(hidden_states) | |
| return hidden_states | |
| class SiglipVisionTransformer(nn.Module): | |
| def __init__(self, config: SiglipVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| embed_dim = config.hidden_size | |
| self.embeddings = SiglipVisionEmbeddings(config) | |
| self.encoder = SiglipEncoder(config) | |
| self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
| def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: | |
| # pixel_values: [Batch_Size, Channels, Height, Width] -> [Batch_Size, Num_Patches, Embed_Dim] | |
| hidden_states = self.embeddings(pixel_values) | |
| last_hidden_state = self.encoder(inputs_embeds=hidden_states) | |
| last_hidden_state = self.post_layernorm(last_hidden_state) | |
| return last_hidden_state | |
| class SiglipVisionModel(nn.Module): | |
| def __init__(self, config: SiglipVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| self.vision_model = SiglipVisionTransformer(config) | |
| def forward(self, pixel_values) -> Tuple: | |
| # [Batch_Size, Channels, Height, Width] -> [Batch_Size, Num_Patches, Embed_Dim] | |
| return self.vision_model(pixel_values=pixel_values) | |