Spaces:
Running
on
Zero
Running
on
Zero
app.py
CHANGED
|
@@ -20,14 +20,13 @@ except ImportError:
|
|
| 20 |
return decorator
|
| 21 |
spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})
|
| 22 |
|
| 23 |
-
# Model configuration -
|
| 24 |
MODEL_NAME = "fdtn-ai/Foundation-Sec-8B"
|
| 25 |
-
#MODEL_NAME = "sshleifer/tiny-gpt2"
|
| 26 |
|
| 27 |
# Initialize tokenizer and model using pipeline approach
|
| 28 |
print(f"Loading model: {MODEL_NAME}")
|
| 29 |
try:
|
| 30 |
-
print(f"Initializing
|
| 31 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 32 |
text_pipeline = pipeline(
|
| 33 |
"text-generation",
|
|
@@ -37,14 +36,14 @@ try:
|
|
| 37 |
device_map="auto",
|
| 38 |
trust_remote_code=True
|
| 39 |
)
|
| 40 |
-
print(f"
|
| 41 |
|
| 42 |
# Extract model and tokenizer from pipeline for direct access
|
| 43 |
model = text_pipeline.model
|
| 44 |
tok = text_pipeline.tokenizer
|
| 45 |
|
| 46 |
except Exception as e:
|
| 47 |
-
print(f"Error initializing model
|
| 48 |
print("Trying with simplified parameters...")
|
| 49 |
|
| 50 |
try:
|
|
@@ -56,36 +55,11 @@ except Exception as e:
|
|
| 56 |
)
|
| 57 |
model = text_pipeline.model
|
| 58 |
tok = text_pipeline.tokenizer
|
| 59 |
-
print(f"
|
| 60 |
|
| 61 |
except Exception as e2:
|
| 62 |
-
print(f"
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
# Use distilgpt2 which uses safetensors format and is more compatible
|
| 66 |
-
MODEL_NAME = "distilgpt2"
|
| 67 |
-
try:
|
| 68 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 69 |
-
text_pipeline = pipeline(
|
| 70 |
-
"text-generation",
|
| 71 |
-
model=MODEL_NAME,
|
| 72 |
-
tokenizer=tokenizer
|
| 73 |
-
)
|
| 74 |
-
model = text_pipeline.model
|
| 75 |
-
tok = text_pipeline.tokenizer
|
| 76 |
-
print(f"Fallback model loaded: {MODEL_NAME}")
|
| 77 |
-
|
| 78 |
-
except Exception as e3:
|
| 79 |
-
print(f"Fallback also failed: {str(e3)}")
|
| 80 |
-
print("Trying direct model loading as last resort...")
|
| 81 |
-
|
| 82 |
-
# Last resort: direct loading without pipeline
|
| 83 |
-
try:
|
| 84 |
-
tok = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 85 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME).eval()
|
| 86 |
-
print(f"Direct loading successful: {MODEL_NAME}")
|
| 87 |
-
except Exception as e4:
|
| 88 |
-
raise RuntimeError(f"All model loading attempts failed. Last error: {str(e4)}")
|
| 89 |
|
| 90 |
# Log device information
|
| 91 |
if hasattr(model, 'device'):
|
|
|
|
| 20 |
return decorator
|
| 21 |
spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})
|
| 22 |
|
| 23 |
+
# Model configuration - Foundation-Sec-8B only
|
| 24 |
MODEL_NAME = "fdtn-ai/Foundation-Sec-8B"
|
|
|
|
| 25 |
|
| 26 |
# Initialize tokenizer and model using pipeline approach
|
| 27 |
print(f"Loading model: {MODEL_NAME}")
|
| 28 |
try:
|
| 29 |
+
print(f"Initializing Foundation-Sec-8B model...")
|
| 30 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 31 |
text_pipeline = pipeline(
|
| 32 |
"text-generation",
|
|
|
|
| 36 |
device_map="auto",
|
| 37 |
trust_remote_code=True
|
| 38 |
)
|
| 39 |
+
print(f"Foundation-Sec-8B model initialized successfully")
|
| 40 |
|
| 41 |
# Extract model and tokenizer from pipeline for direct access
|
| 42 |
model = text_pipeline.model
|
| 43 |
tok = text_pipeline.tokenizer
|
| 44 |
|
| 45 |
except Exception as e:
|
| 46 |
+
print(f"Error initializing Foundation-Sec-8B model: {str(e)}")
|
| 47 |
print("Trying with simplified parameters...")
|
| 48 |
|
| 49 |
try:
|
|
|
|
| 55 |
)
|
| 56 |
model = text_pipeline.model
|
| 57 |
tok = text_pipeline.tokenizer
|
| 58 |
+
print(f"Foundation-Sec-8B model loaded with simplified parameters")
|
| 59 |
|
| 60 |
except Exception as e2:
|
| 61 |
+
print(f"Failed to load Foundation-Sec-8B model: {str(e2)}")
|
| 62 |
+
raise RuntimeError(f"Could not load Foundation-Sec-8B model. Please ensure the model is accessible and try again. Error: {str(e2)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
# Log device information
|
| 65 |
if hasattr(model, 'device'):
|