Spaces:
Sleeping
Sleeping
File size: 1,315 Bytes
0412ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
import tensorflow as tf
from PIL import Image
import numpy as np
import requests
import os
# Ensure model folder exists
os.makedirs("model", exist_ok=True)
# Download the model from Hugging Face if not already present
model_path = "model/mobnet_model.keras"
if not os.path.exists(model_path):
url = "https://huggingface.co/ahmzakif/TrashNet-Classification/resolve/main/model/mobnet_model.keras"
r = requests.get(url)
with open(model_path, "wb") as f:
f.write(r.content)
# Load Keras model
model = tf.keras.models.load_model(model_path)
# TrashNet classes
classes = ["cardboard", "glass", "metal", "paper", "plastic", "trash"]
# Image preprocessing
def predict(image: Image.Image):
image = image.convert("RGB").resize((224, 224))
x = np.array(image, dtype=np.float32) / 255.0
x = np.expand_dims(x, axis=0)
preds = model.predict(x)[0]
scores = {classes[i]: float(preds[i]) for i in range(len(classes))}
top_class = max(scores, key=scores.get)
return {"prediction": top_class, "scores": scores}
# Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs="json",
title="TrashNet Classification API",
description="Upload an image of trash to get its classification."
)
iface.launch()
|