Commit
·
186cb34
1
Parent(s):
eadf559
Delete voice_main.py
Browse files- voice_main.py +0 -732
voice_main.py
DELETED
|
@@ -1,732 +0,0 @@
|
|
| 1 |
-
from soni_translate.logging_setup import logger
|
| 2 |
-
import torch
|
| 3 |
-
import gc
|
| 4 |
-
import numpy as np
|
| 5 |
-
import os
|
| 6 |
-
import shutil
|
| 7 |
-
import warnings
|
| 8 |
-
import threading
|
| 9 |
-
from tqdm import tqdm
|
| 10 |
-
from lib.infer_pack.models import (
|
| 11 |
-
SynthesizerTrnMs256NSFsid,
|
| 12 |
-
SynthesizerTrnMs256NSFsid_nono,
|
| 13 |
-
SynthesizerTrnMs768NSFsid,
|
| 14 |
-
SynthesizerTrnMs768NSFsid_nono,
|
| 15 |
-
)
|
| 16 |
-
from lib.audio import load_audio
|
| 17 |
-
import soundfile as sf
|
| 18 |
-
import edge_tts
|
| 19 |
-
import asyncio
|
| 20 |
-
from soni_translate.utils import remove_directory_contents, create_directories
|
| 21 |
-
from scipy import signal
|
| 22 |
-
from time import time as ttime
|
| 23 |
-
import faiss
|
| 24 |
-
from vci_pipeline import VC, change_rms, bh, ah
|
| 25 |
-
import librosa
|
| 26 |
-
|
| 27 |
-
warnings.filterwarnings("ignore")
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
class Config:
|
| 31 |
-
def __init__(self, only_cpu=False):
|
| 32 |
-
self.device = "cuda:0"
|
| 33 |
-
self.is_half = True
|
| 34 |
-
self.n_cpu = 0
|
| 35 |
-
self.gpu_name = None
|
| 36 |
-
self.gpu_mem = None
|
| 37 |
-
(
|
| 38 |
-
self.x_pad,
|
| 39 |
-
self.x_query,
|
| 40 |
-
self.x_center,
|
| 41 |
-
self.x_max
|
| 42 |
-
) = self.device_config(only_cpu)
|
| 43 |
-
|
| 44 |
-
def device_config(self, only_cpu) -> tuple:
|
| 45 |
-
if torch.cuda.is_available() and not only_cpu:
|
| 46 |
-
i_device = int(self.device.split(":")[-1])
|
| 47 |
-
self.gpu_name = torch.cuda.get_device_name(i_device)
|
| 48 |
-
if (
|
| 49 |
-
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
| 50 |
-
or "P40" in self.gpu_name.upper()
|
| 51 |
-
or "1060" in self.gpu_name
|
| 52 |
-
or "1070" in self.gpu_name
|
| 53 |
-
or "1080" in self.gpu_name
|
| 54 |
-
):
|
| 55 |
-
logger.info(
|
| 56 |
-
"16/10 Series GPUs and P40 excel "
|
| 57 |
-
"in single-precision tasks."
|
| 58 |
-
)
|
| 59 |
-
self.is_half = False
|
| 60 |
-
else:
|
| 61 |
-
self.gpu_name = None
|
| 62 |
-
self.gpu_mem = int(
|
| 63 |
-
torch.cuda.get_device_properties(i_device).total_memory
|
| 64 |
-
/ 1024
|
| 65 |
-
/ 1024
|
| 66 |
-
/ 1024
|
| 67 |
-
+ 0.4
|
| 68 |
-
)
|
| 69 |
-
elif torch.backends.mps.is_available() and not only_cpu:
|
| 70 |
-
logger.info("Supported N-card not found, using MPS for inference")
|
| 71 |
-
self.device = "mps"
|
| 72 |
-
else:
|
| 73 |
-
logger.info("No supported N-card found, using CPU for inference")
|
| 74 |
-
self.device = "cpu"
|
| 75 |
-
self.is_half = False
|
| 76 |
-
|
| 77 |
-
if self.n_cpu == 0:
|
| 78 |
-
self.n_cpu = os.cpu_count()
|
| 79 |
-
|
| 80 |
-
if self.is_half:
|
| 81 |
-
# 6GB VRAM configuration
|
| 82 |
-
x_pad = 3
|
| 83 |
-
x_query = 10
|
| 84 |
-
x_center = 60
|
| 85 |
-
x_max = 65
|
| 86 |
-
else:
|
| 87 |
-
# 5GB VRAM configuration
|
| 88 |
-
x_pad = 1
|
| 89 |
-
x_query = 6
|
| 90 |
-
x_center = 38
|
| 91 |
-
x_max = 41
|
| 92 |
-
|
| 93 |
-
if self.gpu_mem is not None and self.gpu_mem <= 4:
|
| 94 |
-
x_pad = 1
|
| 95 |
-
x_query = 5
|
| 96 |
-
x_center = 30
|
| 97 |
-
x_max = 32
|
| 98 |
-
|
| 99 |
-
logger.info(
|
| 100 |
-
f"Config: Device is {self.device}, "
|
| 101 |
-
f"half precision is {self.is_half}"
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
return x_pad, x_query, x_center, x_max
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
BASE_DOWNLOAD_LINK = "https://huggingface.co/r3gm/sonitranslate_voice_models/resolve/main/"
|
| 108 |
-
BASE_MODELS = [
|
| 109 |
-
"hubert_base.pt",
|
| 110 |
-
"rmvpe.pt"
|
| 111 |
-
]
|
| 112 |
-
BASE_DIR = "."
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
def load_hu_bert(config):
|
| 116 |
-
from fairseq import checkpoint_utils
|
| 117 |
-
from soni_translate.utils import download_manager
|
| 118 |
-
|
| 119 |
-
for id_model in BASE_MODELS:
|
| 120 |
-
download_manager(
|
| 121 |
-
os.path.join(BASE_DOWNLOAD_LINK, id_model), BASE_DIR
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
| 125 |
-
["hubert_base.pt"],
|
| 126 |
-
suffix="",
|
| 127 |
-
)
|
| 128 |
-
hubert_model = models[0]
|
| 129 |
-
hubert_model = hubert_model.to(config.device)
|
| 130 |
-
if config.is_half:
|
| 131 |
-
hubert_model = hubert_model.half()
|
| 132 |
-
else:
|
| 133 |
-
hubert_model = hubert_model.float()
|
| 134 |
-
hubert_model.eval()
|
| 135 |
-
|
| 136 |
-
return hubert_model
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
def load_trained_model(model_path, config):
|
| 140 |
-
|
| 141 |
-
if not model_path:
|
| 142 |
-
raise ValueError("No model found")
|
| 143 |
-
|
| 144 |
-
logger.info("Loading %s" % model_path)
|
| 145 |
-
cpt = torch.load(model_path, map_location="cpu")
|
| 146 |
-
tgt_sr = cpt["config"][-1]
|
| 147 |
-
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
| 148 |
-
if_f0 = cpt.get("f0", 1)
|
| 149 |
-
if if_f0 == 0:
|
| 150 |
-
# protect to 0.5 need?
|
| 151 |
-
pass
|
| 152 |
-
|
| 153 |
-
version = cpt.get("version", "v1")
|
| 154 |
-
if version == "v1":
|
| 155 |
-
if if_f0 == 1:
|
| 156 |
-
net_g = SynthesizerTrnMs256NSFsid(
|
| 157 |
-
*cpt["config"], is_half=config.is_half
|
| 158 |
-
)
|
| 159 |
-
else:
|
| 160 |
-
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
| 161 |
-
elif version == "v2":
|
| 162 |
-
if if_f0 == 1:
|
| 163 |
-
net_g = SynthesizerTrnMs768NSFsid(
|
| 164 |
-
*cpt["config"], is_half=config.is_half
|
| 165 |
-
)
|
| 166 |
-
else:
|
| 167 |
-
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
| 168 |
-
del net_g.enc_q
|
| 169 |
-
|
| 170 |
-
net_g.load_state_dict(cpt["weight"], strict=False)
|
| 171 |
-
net_g.eval().to(config.device)
|
| 172 |
-
|
| 173 |
-
if config.is_half:
|
| 174 |
-
net_g = net_g.half()
|
| 175 |
-
else:
|
| 176 |
-
net_g = net_g.float()
|
| 177 |
-
|
| 178 |
-
vc = VC(tgt_sr, config)
|
| 179 |
-
n_spk = cpt["config"][-3]
|
| 180 |
-
|
| 181 |
-
return n_spk, tgt_sr, net_g, vc, cpt, version
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
class ClassVoices:
|
| 185 |
-
def __init__(self, only_cpu=False):
|
| 186 |
-
self.model_config = {}
|
| 187 |
-
self.config = None
|
| 188 |
-
self.only_cpu = only_cpu
|
| 189 |
-
|
| 190 |
-
def apply_conf(
|
| 191 |
-
self,
|
| 192 |
-
tag="base_model",
|
| 193 |
-
file_model="",
|
| 194 |
-
pitch_algo="pm",
|
| 195 |
-
pitch_lvl=0,
|
| 196 |
-
file_index="",
|
| 197 |
-
index_influence=0.66,
|
| 198 |
-
respiration_median_filtering=3,
|
| 199 |
-
envelope_ratio=0.25,
|
| 200 |
-
consonant_breath_protection=0.33,
|
| 201 |
-
resample_sr=0,
|
| 202 |
-
file_pitch_algo="",
|
| 203 |
-
):
|
| 204 |
-
|
| 205 |
-
if not file_model:
|
| 206 |
-
raise ValueError("Model not found")
|
| 207 |
-
|
| 208 |
-
if file_index is None:
|
| 209 |
-
file_index = ""
|
| 210 |
-
|
| 211 |
-
if file_pitch_algo is None:
|
| 212 |
-
file_pitch_algo = ""
|
| 213 |
-
|
| 214 |
-
if not self.config:
|
| 215 |
-
self.config = Config(self.only_cpu)
|
| 216 |
-
self.hu_bert_model = None
|
| 217 |
-
self.model_pitch_estimator = None
|
| 218 |
-
|
| 219 |
-
self.model_config[tag] = {
|
| 220 |
-
"file_model": file_model,
|
| 221 |
-
"pitch_algo": pitch_algo,
|
| 222 |
-
"pitch_lvl": pitch_lvl, # no decimal
|
| 223 |
-
"file_index": file_index,
|
| 224 |
-
"index_influence": index_influence,
|
| 225 |
-
"respiration_median_filtering": respiration_median_filtering,
|
| 226 |
-
"envelope_ratio": envelope_ratio,
|
| 227 |
-
"consonant_breath_protection": consonant_breath_protection,
|
| 228 |
-
"resample_sr": resample_sr,
|
| 229 |
-
"file_pitch_algo": file_pitch_algo,
|
| 230 |
-
}
|
| 231 |
-
return f"CONFIGURATION APPLIED FOR {tag}: {file_model}"
|
| 232 |
-
|
| 233 |
-
def infer(
|
| 234 |
-
self,
|
| 235 |
-
task_id,
|
| 236 |
-
params,
|
| 237 |
-
# load model
|
| 238 |
-
n_spk,
|
| 239 |
-
tgt_sr,
|
| 240 |
-
net_g,
|
| 241 |
-
pipe,
|
| 242 |
-
cpt,
|
| 243 |
-
version,
|
| 244 |
-
if_f0,
|
| 245 |
-
# load index
|
| 246 |
-
index_rate,
|
| 247 |
-
index,
|
| 248 |
-
big_npy,
|
| 249 |
-
# load f0 file
|
| 250 |
-
inp_f0,
|
| 251 |
-
# audio file
|
| 252 |
-
input_audio_path,
|
| 253 |
-
overwrite,
|
| 254 |
-
):
|
| 255 |
-
|
| 256 |
-
f0_method = params["pitch_algo"]
|
| 257 |
-
f0_up_key = params["pitch_lvl"]
|
| 258 |
-
filter_radius = params["respiration_median_filtering"]
|
| 259 |
-
resample_sr = params["resample_sr"]
|
| 260 |
-
rms_mix_rate = params["envelope_ratio"]
|
| 261 |
-
protect = params["consonant_breath_protection"]
|
| 262 |
-
|
| 263 |
-
if not os.path.exists(input_audio_path):
|
| 264 |
-
raise ValueError(
|
| 265 |
-
"The audio file was not found or is not "
|
| 266 |
-
f"a valid file: {input_audio_path}"
|
| 267 |
-
)
|
| 268 |
-
|
| 269 |
-
f0_up_key = int(f0_up_key)
|
| 270 |
-
|
| 271 |
-
audio = load_audio(input_audio_path, 16000)
|
| 272 |
-
|
| 273 |
-
# Normalize audio
|
| 274 |
-
audio_max = np.abs(audio).max() / 0.95
|
| 275 |
-
if audio_max > 1:
|
| 276 |
-
audio /= audio_max
|
| 277 |
-
|
| 278 |
-
times = [0, 0, 0]
|
| 279 |
-
|
| 280 |
-
# filters audio signal, pads it, computes sliding window sums,
|
| 281 |
-
# and extracts optimized time indices
|
| 282 |
-
audio = signal.filtfilt(bh, ah, audio)
|
| 283 |
-
audio_pad = np.pad(
|
| 284 |
-
audio, (pipe.window // 2, pipe.window // 2), mode="reflect"
|
| 285 |
-
)
|
| 286 |
-
opt_ts = []
|
| 287 |
-
if audio_pad.shape[0] > pipe.t_max:
|
| 288 |
-
audio_sum = np.zeros_like(audio)
|
| 289 |
-
for i in range(pipe.window):
|
| 290 |
-
audio_sum += audio_pad[i:i - pipe.window]
|
| 291 |
-
for t in range(pipe.t_center, audio.shape[0], pipe.t_center):
|
| 292 |
-
opt_ts.append(
|
| 293 |
-
t
|
| 294 |
-
- pipe.t_query
|
| 295 |
-
+ np.where(
|
| 296 |
-
np.abs(audio_sum[t - pipe.t_query: t + pipe.t_query])
|
| 297 |
-
== np.abs(audio_sum[t - pipe.t_query: t + pipe.t_query]).min()
|
| 298 |
-
)[0][0]
|
| 299 |
-
)
|
| 300 |
-
|
| 301 |
-
s = 0
|
| 302 |
-
audio_opt = []
|
| 303 |
-
t = None
|
| 304 |
-
t1 = ttime()
|
| 305 |
-
|
| 306 |
-
sid_value = 0
|
| 307 |
-
sid = torch.tensor(sid_value, device=pipe.device).unsqueeze(0).long()
|
| 308 |
-
|
| 309 |
-
# Pads audio symmetrically, calculates length divided by window size.
|
| 310 |
-
audio_pad = np.pad(audio, (pipe.t_pad, pipe.t_pad), mode="reflect")
|
| 311 |
-
p_len = audio_pad.shape[0] // pipe.window
|
| 312 |
-
|
| 313 |
-
# Estimates pitch from audio signal
|
| 314 |
-
pitch, pitchf = None, None
|
| 315 |
-
if if_f0 == 1:
|
| 316 |
-
pitch, pitchf = pipe.get_f0(
|
| 317 |
-
input_audio_path,
|
| 318 |
-
audio_pad,
|
| 319 |
-
p_len,
|
| 320 |
-
f0_up_key,
|
| 321 |
-
f0_method,
|
| 322 |
-
filter_radius,
|
| 323 |
-
inp_f0,
|
| 324 |
-
)
|
| 325 |
-
pitch = pitch[:p_len]
|
| 326 |
-
pitchf = pitchf[:p_len]
|
| 327 |
-
if pipe.device == "mps":
|
| 328 |
-
pitchf = pitchf.astype(np.float32)
|
| 329 |
-
pitch = torch.tensor(
|
| 330 |
-
pitch, device=pipe.device
|
| 331 |
-
).unsqueeze(0).long()
|
| 332 |
-
pitchf = torch.tensor(
|
| 333 |
-
pitchf, device=pipe.device
|
| 334 |
-
).unsqueeze(0).float()
|
| 335 |
-
|
| 336 |
-
t2 = ttime()
|
| 337 |
-
times[1] += t2 - t1
|
| 338 |
-
for t in opt_ts:
|
| 339 |
-
t = t // pipe.window * pipe.window
|
| 340 |
-
if if_f0 == 1:
|
| 341 |
-
pitch_slice = pitch[
|
| 342 |
-
:, s // pipe.window: (t + pipe.t_pad2) // pipe.window
|
| 343 |
-
]
|
| 344 |
-
pitchf_slice = pitchf[
|
| 345 |
-
:, s // pipe.window: (t + pipe.t_pad2) // pipe.window
|
| 346 |
-
]
|
| 347 |
-
else:
|
| 348 |
-
pitch_slice = None
|
| 349 |
-
pitchf_slice = None
|
| 350 |
-
|
| 351 |
-
audio_slice = audio_pad[s:t + pipe.t_pad2 + pipe.window]
|
| 352 |
-
audio_opt.append(
|
| 353 |
-
pipe.vc(
|
| 354 |
-
self.hu_bert_model,
|
| 355 |
-
net_g,
|
| 356 |
-
sid,
|
| 357 |
-
audio_slice,
|
| 358 |
-
pitch_slice,
|
| 359 |
-
pitchf_slice,
|
| 360 |
-
times,
|
| 361 |
-
index,
|
| 362 |
-
big_npy,
|
| 363 |
-
index_rate,
|
| 364 |
-
version,
|
| 365 |
-
protect,
|
| 366 |
-
)[pipe.t_pad_tgt:-pipe.t_pad_tgt]
|
| 367 |
-
)
|
| 368 |
-
s = t
|
| 369 |
-
|
| 370 |
-
pitch_end_slice = pitch[
|
| 371 |
-
:, t // pipe.window:
|
| 372 |
-
] if t is not None else pitch
|
| 373 |
-
pitchf_end_slice = pitchf[
|
| 374 |
-
:, t // pipe.window:
|
| 375 |
-
] if t is not None else pitchf
|
| 376 |
-
|
| 377 |
-
audio_opt.append(
|
| 378 |
-
pipe.vc(
|
| 379 |
-
self.hu_bert_model,
|
| 380 |
-
net_g,
|
| 381 |
-
sid,
|
| 382 |
-
audio_pad[t:],
|
| 383 |
-
pitch_end_slice,
|
| 384 |
-
pitchf_end_slice,
|
| 385 |
-
times,
|
| 386 |
-
index,
|
| 387 |
-
big_npy,
|
| 388 |
-
index_rate,
|
| 389 |
-
version,
|
| 390 |
-
protect,
|
| 391 |
-
)[pipe.t_pad_tgt:-pipe.t_pad_tgt]
|
| 392 |
-
)
|
| 393 |
-
|
| 394 |
-
audio_opt = np.concatenate(audio_opt)
|
| 395 |
-
if rms_mix_rate != 1:
|
| 396 |
-
audio_opt = change_rms(
|
| 397 |
-
audio, 16000, audio_opt, tgt_sr, rms_mix_rate
|
| 398 |
-
)
|
| 399 |
-
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
| 400 |
-
audio_opt = librosa.resample(
|
| 401 |
-
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
| 402 |
-
)
|
| 403 |
-
audio_max = np.abs(audio_opt).max() / 0.99
|
| 404 |
-
max_int16 = 32768
|
| 405 |
-
if audio_max > 1:
|
| 406 |
-
max_int16 /= audio_max
|
| 407 |
-
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
| 408 |
-
del pitch, pitchf, sid
|
| 409 |
-
if torch.cuda.is_available():
|
| 410 |
-
torch.cuda.empty_cache()
|
| 411 |
-
|
| 412 |
-
if tgt_sr != resample_sr >= 16000:
|
| 413 |
-
final_sr = resample_sr
|
| 414 |
-
else:
|
| 415 |
-
final_sr = tgt_sr
|
| 416 |
-
|
| 417 |
-
"""
|
| 418 |
-
"Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
| 419 |
-
times[0],
|
| 420 |
-
times[1],
|
| 421 |
-
times[2],
|
| 422 |
-
), (final_sr, audio_opt)
|
| 423 |
-
|
| 424 |
-
"""
|
| 425 |
-
|
| 426 |
-
if overwrite:
|
| 427 |
-
output_audio_path = input_audio_path # Overwrite
|
| 428 |
-
else:
|
| 429 |
-
basename = os.path.basename(input_audio_path)
|
| 430 |
-
dirname = os.path.dirname(input_audio_path)
|
| 431 |
-
|
| 432 |
-
new_basename = basename.split(
|
| 433 |
-
'.')[0] + "_edited." + basename.split('.')[-1]
|
| 434 |
-
new_path = os.path.join(dirname, new_basename)
|
| 435 |
-
logger.info(str(new_path))
|
| 436 |
-
|
| 437 |
-
output_audio_path = new_path
|
| 438 |
-
|
| 439 |
-
# Save file
|
| 440 |
-
sf.write(
|
| 441 |
-
file=output_audio_path,
|
| 442 |
-
samplerate=final_sr,
|
| 443 |
-
data=audio_opt
|
| 444 |
-
)
|
| 445 |
-
|
| 446 |
-
self.model_config[task_id]["result"].append(output_audio_path)
|
| 447 |
-
self.output_list.append(output_audio_path)
|
| 448 |
-
|
| 449 |
-
def make_test(
|
| 450 |
-
self,
|
| 451 |
-
tts_text,
|
| 452 |
-
tts_voice,
|
| 453 |
-
model_path,
|
| 454 |
-
index_path,
|
| 455 |
-
transpose,
|
| 456 |
-
f0_method,
|
| 457 |
-
):
|
| 458 |
-
|
| 459 |
-
folder_test = "test"
|
| 460 |
-
tag = "test_edge"
|
| 461 |
-
tts_file = "test/test.wav"
|
| 462 |
-
tts_edited = "test/test_edited.wav"
|
| 463 |
-
|
| 464 |
-
create_directories(folder_test)
|
| 465 |
-
remove_directory_contents(folder_test)
|
| 466 |
-
|
| 467 |
-
if "SET_LIMIT" == os.getenv("DEMO"):
|
| 468 |
-
if len(tts_text) > 60:
|
| 469 |
-
tts_text = tts_text[:60]
|
| 470 |
-
logger.warning("DEMO; limit to 60 characters")
|
| 471 |
-
|
| 472 |
-
try:
|
| 473 |
-
asyncio.run(edge_tts.Communicate(
|
| 474 |
-
tts_text, "-".join(tts_voice.split('-')[:-1])
|
| 475 |
-
).save(tts_file))
|
| 476 |
-
except Exception as e:
|
| 477 |
-
raise ValueError(
|
| 478 |
-
"No audio was received. Please change the "
|
| 479 |
-
f"tts voice for {tts_voice}. Error: {str(e)}"
|
| 480 |
-
)
|
| 481 |
-
|
| 482 |
-
shutil.copy(tts_file, tts_edited)
|
| 483 |
-
|
| 484 |
-
self.apply_conf(
|
| 485 |
-
tag=tag,
|
| 486 |
-
file_model=model_path,
|
| 487 |
-
pitch_algo=f0_method,
|
| 488 |
-
pitch_lvl=transpose,
|
| 489 |
-
file_index=index_path,
|
| 490 |
-
index_influence=0.66,
|
| 491 |
-
respiration_median_filtering=3,
|
| 492 |
-
envelope_ratio=0.25,
|
| 493 |
-
consonant_breath_protection=0.33,
|
| 494 |
-
)
|
| 495 |
-
|
| 496 |
-
self(
|
| 497 |
-
audio_files=tts_edited,
|
| 498 |
-
tag_list=tag,
|
| 499 |
-
overwrite=True
|
| 500 |
-
)
|
| 501 |
-
|
| 502 |
-
return tts_edited, tts_file
|
| 503 |
-
|
| 504 |
-
def run_threads(self, threads):
|
| 505 |
-
# Start threads
|
| 506 |
-
for thread in threads:
|
| 507 |
-
thread.start()
|
| 508 |
-
|
| 509 |
-
# Wait for all threads to finish
|
| 510 |
-
for thread in threads:
|
| 511 |
-
thread.join()
|
| 512 |
-
|
| 513 |
-
gc.collect()
|
| 514 |
-
torch.cuda.empty_cache()
|
| 515 |
-
|
| 516 |
-
def unload_models(self):
|
| 517 |
-
self.hu_bert_model = None
|
| 518 |
-
self.model_pitch_estimator = None
|
| 519 |
-
gc.collect()
|
| 520 |
-
torch.cuda.empty_cache()
|
| 521 |
-
|
| 522 |
-
def __call__(
|
| 523 |
-
self,
|
| 524 |
-
audio_files=[],
|
| 525 |
-
tag_list=[],
|
| 526 |
-
overwrite=False,
|
| 527 |
-
parallel_workers=1,
|
| 528 |
-
):
|
| 529 |
-
logger.info(f"Parallel workers: {str(parallel_workers)}")
|
| 530 |
-
|
| 531 |
-
self.output_list = []
|
| 532 |
-
|
| 533 |
-
if not self.model_config:
|
| 534 |
-
raise ValueError("No model has been configured for inference")
|
| 535 |
-
|
| 536 |
-
if isinstance(audio_files, str):
|
| 537 |
-
audio_files = [audio_files]
|
| 538 |
-
if isinstance(tag_list, str):
|
| 539 |
-
tag_list = [tag_list]
|
| 540 |
-
|
| 541 |
-
if not audio_files:
|
| 542 |
-
raise ValueError("No audio found to convert")
|
| 543 |
-
if not tag_list:
|
| 544 |
-
tag_list = [list(self.model_config.keys())[-1]] * len(audio_files)
|
| 545 |
-
|
| 546 |
-
if len(audio_files) > len(tag_list):
|
| 547 |
-
logger.info("Extend tag list to match audio files")
|
| 548 |
-
extend_number = len(audio_files) - len(tag_list)
|
| 549 |
-
tag_list.extend([tag_list[0]] * extend_number)
|
| 550 |
-
|
| 551 |
-
if len(audio_files) < len(tag_list):
|
| 552 |
-
logger.info("Cut list tags")
|
| 553 |
-
tag_list = tag_list[:len(audio_files)]
|
| 554 |
-
|
| 555 |
-
tag_file_pairs = list(zip(tag_list, audio_files))
|
| 556 |
-
sorted_tag_file = sorted(tag_file_pairs, key=lambda x: x[0])
|
| 557 |
-
|
| 558 |
-
# Base params
|
| 559 |
-
if not self.hu_bert_model:
|
| 560 |
-
self.hu_bert_model = load_hu_bert(self.config)
|
| 561 |
-
|
| 562 |
-
cache_params = None
|
| 563 |
-
threads = []
|
| 564 |
-
progress_bar = tqdm(total=len(tag_list), desc="Progress")
|
| 565 |
-
for i, (id_tag, input_audio_path) in enumerate(sorted_tag_file):
|
| 566 |
-
|
| 567 |
-
if id_tag not in self.model_config.keys():
|
| 568 |
-
logger.info(
|
| 569 |
-
f"No configured model for {id_tag} with {input_audio_path}"
|
| 570 |
-
)
|
| 571 |
-
continue
|
| 572 |
-
|
| 573 |
-
if (
|
| 574 |
-
len(threads) >= parallel_workers
|
| 575 |
-
or cache_params != id_tag
|
| 576 |
-
and cache_params is not None
|
| 577 |
-
):
|
| 578 |
-
|
| 579 |
-
self.run_threads(threads)
|
| 580 |
-
progress_bar.update(len(threads))
|
| 581 |
-
|
| 582 |
-
threads = []
|
| 583 |
-
|
| 584 |
-
if cache_params != id_tag:
|
| 585 |
-
|
| 586 |
-
self.model_config[id_tag]["result"] = []
|
| 587 |
-
|
| 588 |
-
# Unload previous
|
| 589 |
-
(
|
| 590 |
-
n_spk,
|
| 591 |
-
tgt_sr,
|
| 592 |
-
net_g,
|
| 593 |
-
pipe,
|
| 594 |
-
cpt,
|
| 595 |
-
version,
|
| 596 |
-
if_f0,
|
| 597 |
-
index_rate,
|
| 598 |
-
index,
|
| 599 |
-
big_npy,
|
| 600 |
-
inp_f0,
|
| 601 |
-
) = [None] * 11
|
| 602 |
-
gc.collect()
|
| 603 |
-
torch.cuda.empty_cache()
|
| 604 |
-
|
| 605 |
-
# Model params
|
| 606 |
-
params = self.model_config[id_tag]
|
| 607 |
-
|
| 608 |
-
model_path = params["file_model"]
|
| 609 |
-
f0_method = params["pitch_algo"]
|
| 610 |
-
file_index = params["file_index"]
|
| 611 |
-
index_rate = params["index_influence"]
|
| 612 |
-
f0_file = params["file_pitch_algo"]
|
| 613 |
-
|
| 614 |
-
# Load model
|
| 615 |
-
(
|
| 616 |
-
n_spk,
|
| 617 |
-
tgt_sr,
|
| 618 |
-
net_g,
|
| 619 |
-
pipe,
|
| 620 |
-
cpt,
|
| 621 |
-
version
|
| 622 |
-
) = load_trained_model(model_path, self.config)
|
| 623 |
-
if_f0 = cpt.get("f0", 1) # pitch data
|
| 624 |
-
|
| 625 |
-
# Load index
|
| 626 |
-
if os.path.exists(file_index) and index_rate != 0:
|
| 627 |
-
try:
|
| 628 |
-
index = faiss.read_index(file_index)
|
| 629 |
-
big_npy = index.reconstruct_n(0, index.ntotal)
|
| 630 |
-
except Exception as error:
|
| 631 |
-
logger.error(f"Index: {str(error)}")
|
| 632 |
-
index_rate = 0
|
| 633 |
-
index = big_npy = None
|
| 634 |
-
else:
|
| 635 |
-
logger.warning("File index not found")
|
| 636 |
-
index_rate = 0
|
| 637 |
-
index = big_npy = None
|
| 638 |
-
|
| 639 |
-
# Load f0 file
|
| 640 |
-
inp_f0 = None
|
| 641 |
-
if os.path.exists(f0_file):
|
| 642 |
-
try:
|
| 643 |
-
with open(f0_file, "r") as f:
|
| 644 |
-
lines = f.read().strip("\n").split("\n")
|
| 645 |
-
inp_f0 = []
|
| 646 |
-
for line in lines:
|
| 647 |
-
inp_f0.append([float(i) for i in line.split(",")])
|
| 648 |
-
inp_f0 = np.array(inp_f0, dtype="float32")
|
| 649 |
-
except Exception as error:
|
| 650 |
-
logger.error(f"f0 file: {str(error)}")
|
| 651 |
-
|
| 652 |
-
if "rmvpe" in f0_method:
|
| 653 |
-
if not self.model_pitch_estimator:
|
| 654 |
-
from lib.rmvpe import RMVPE
|
| 655 |
-
|
| 656 |
-
logger.info("Loading vocal pitch estimator model")
|
| 657 |
-
self.model_pitch_estimator = RMVPE(
|
| 658 |
-
"rmvpe.pt",
|
| 659 |
-
is_half=self.config.is_half,
|
| 660 |
-
device=self.config.device
|
| 661 |
-
)
|
| 662 |
-
|
| 663 |
-
pipe.model_rmvpe = self.model_pitch_estimator
|
| 664 |
-
|
| 665 |
-
cache_params = id_tag
|
| 666 |
-
|
| 667 |
-
# self.infer(
|
| 668 |
-
# id_tag,
|
| 669 |
-
# params,
|
| 670 |
-
# # load model
|
| 671 |
-
# n_spk,
|
| 672 |
-
# tgt_sr,
|
| 673 |
-
# net_g,
|
| 674 |
-
# pipe,
|
| 675 |
-
# cpt,
|
| 676 |
-
# version,
|
| 677 |
-
# if_f0,
|
| 678 |
-
# # load index
|
| 679 |
-
# index_rate,
|
| 680 |
-
# index,
|
| 681 |
-
# big_npy,
|
| 682 |
-
# # load f0 file
|
| 683 |
-
# inp_f0,
|
| 684 |
-
# # output file
|
| 685 |
-
# input_audio_path,
|
| 686 |
-
# overwrite,
|
| 687 |
-
# )
|
| 688 |
-
|
| 689 |
-
thread = threading.Thread(
|
| 690 |
-
target=self.infer,
|
| 691 |
-
args=(
|
| 692 |
-
id_tag,
|
| 693 |
-
params,
|
| 694 |
-
# loaded model
|
| 695 |
-
n_spk,
|
| 696 |
-
tgt_sr,
|
| 697 |
-
net_g,
|
| 698 |
-
pipe,
|
| 699 |
-
cpt,
|
| 700 |
-
version,
|
| 701 |
-
if_f0,
|
| 702 |
-
# loaded index
|
| 703 |
-
index_rate,
|
| 704 |
-
index,
|
| 705 |
-
big_npy,
|
| 706 |
-
# loaded f0 file
|
| 707 |
-
inp_f0,
|
| 708 |
-
# audio file
|
| 709 |
-
input_audio_path,
|
| 710 |
-
overwrite,
|
| 711 |
-
)
|
| 712 |
-
)
|
| 713 |
-
|
| 714 |
-
threads.append(thread)
|
| 715 |
-
|
| 716 |
-
# Run last
|
| 717 |
-
if threads:
|
| 718 |
-
self.run_threads(threads)
|
| 719 |
-
|
| 720 |
-
progress_bar.update(len(threads))
|
| 721 |
-
progress_bar.close()
|
| 722 |
-
|
| 723 |
-
final_result = []
|
| 724 |
-
valid_tags = set(tag_list)
|
| 725 |
-
for tag in valid_tags:
|
| 726 |
-
if (
|
| 727 |
-
tag in self.model_config.keys()
|
| 728 |
-
and "result" in self.model_config[tag].keys()
|
| 729 |
-
):
|
| 730 |
-
final_result.extend(self.model_config[tag]["result"])
|
| 731 |
-
|
| 732 |
-
return final_result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|