Spaces:
Build error
Build error
| # import streamlit as st | |
| # from transformers import pipeline | |
| # pipe = pipeline('sentiment-analysis') | |
| # text= st.text_area('enter some text') | |
| # if st.button('Submit'): | |
| # if text: | |
| # out = pipe(text) | |
| # st.write(out) | |
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
| # Load the GPT tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2") | |
| model = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2") | |
| # Load the sentiment analysis pipeline | |
| sentiment_pipeline = pipeline("sentiment-analysis") | |
| # Text input field | |
| user_input = st.text_area("Enter your prompt:") | |
| if st.button("Submit"): | |
| if user_input: | |
| # Generate text using the GPT model | |
| inputs = tokenizer(user_input, return_tensors="pt") | |
| generated_ids = model.generate(**inputs) | |
| generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| # Perform sentiment analysis on both original and generated text | |
| original_sentiment = sentiment_pipeline(user_input) | |
| generated_sentiment = sentiment_pipeline(generated_text) | |
| # Display the results | |
| st.write("Original Text:") | |
| st.write(user_input) | |
| st.write("Original Text Sentiment:", original_sentiment) | |
| st.write("Generated Text:") | |
| st.write(generated_text) | |
| st.write("Generated Text Sentiment:", generated_sentiment) | |