Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| MODEL_ID = "openbmb/MiniCPM-o-4_5" | |
| tokenizer = None | |
| model = None | |
| def load_model(): | |
| global tokenizer, model | |
| if model is not None: | |
| return | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| # GPU recommandé | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| device_map="auto", | |
| ) | |
| model.eval() | |
| def chat(user_msg, history): | |
| load_model() | |
| prompt = user_msg | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| with torch.no_grad(): | |
| out = model.generate( | |
| **inputs, | |
| max_new_tokens=256, | |
| do_sample=True, | |
| temperature=0.7, | |
| top_p=0.9, | |
| ) | |
| text = tokenizer.decode(out[0], skip_special_tokens=True) | |
| # On renvoie juste la réponse générée | |
| return text | |
| demo = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(type="pil"), | |
| out = gr.Image(type="pil") | |
| btn.click(predict, inputs=inp, outputs=out) | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |