meikiocr / app.py
rtr46's picture
Update app.py
091981b verified
raw
history blame
9.3 kB
import gradio as gr
import onnxruntime as ort
import numpy as np
import cv2
from huggingface_hub import hf_hub_download
import os
import json
# --- 1. configuration & model loading ---
# this section runs once when the space starts up.
print("loading models...")
# configuration
det_model_repo = "rtr46/meiki.text.detect.v0"
det_model_name = "meiki.text.detect.v0.1.960x544.onnx"
rec_model_repo = "rtr46/meiki.txt.recognition.v0"
rec_model_name = "meiki.text.rec.v0.960x32.onnx"
input_det_width = 960
input_det_height = 544
input_rec_height = 32
input_rec_width = 960
x_overlap_threshold = 0.3
epsilon = 1e-6
# load models from the hub
try:
det_model_path = hf_hub_download(repo_id=det_model_repo, filename=det_model_name)
rec_model_path = hf_hub_download(repo_id=rec_model_repo, filename=rec_model_name)
# use cpu execution provider for broad compatibility in spaces
providers = ['CPUExecutionProvider']
det_session = ort.InferenceSession(det_model_path, providers=providers)
rec_session = ort.InferenceSession(rec_model_path, providers=providers)
print("models loaded successfully.")
except Exception as e:
det_session, rec_session = None, None
print(f"error loading models: {e}")
raise gr.Error(f"failed to load models. please check space logs. error: {e}")
# --- 2. ocr pipeline helper functions ---
# (these functions remain unchanged)
def preprocess_for_detection(image):
h_orig, w_orig, _ = image.shape
resized = cv2.resize(image, (input_det_width, input_det_height), interpolation=cv2.INTER_LINEAR)
input_tensor = resized.astype(np.float32) / 255.0
input_tensor = np.transpose(input_tensor, (2, 0, 1))
input_tensor = np.expand_dims(input_tensor, axis=0)
scale_x = w_orig / input_det_width
scale_y = h_orig / input_det_height
return input_tensor, scale_x, scale_y
def postprocess_detection_results(raw_outputs, scale_x, scale_y, conf_threshold):
_, boxes, scores = raw_outputs
boxes, scores = boxes[0], scores[0]
text_boxes = []
for box, score in zip(boxes, scores):
if score < conf_threshold: continue
x1, y1, x2, y2 = box
x1_orig, y1_orig = int(x1 * scale_x), int(y1 * scale_y)
x2_orig, y2_orig = int(x2 * scale_x), int(y2 * scale_y)
text_boxes.append({'bbox': [x1_orig, y1_orig, x2_orig, y2_orig]})
text_boxes.sort(key=lambda tb: tb['bbox'][1])
return text_boxes
def preprocess_for_recognition(image, text_boxes):
tensors, valid_indices, crop_metadata = [], [], []
for i, tb in enumerate(text_boxes):
x1, y1, x2, y2 = tb['bbox']
width, height = x2 - x1, y2 - y1
if width < height or width == 0 or height == 0: continue
crop = image[y1:y2, x1:x2]
h, w, _ = crop.shape
new_h, new_w = input_rec_height, int(round(w * (input_rec_height / h)))
if new_w > input_rec_width:
scale = input_rec_width / new_w
new_w, new_h = input_rec_width, int(round(new_h * scale))
resized = cv2.resize(crop, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
pad_w, pad_h = input_rec_width - new_w, input_rec_height - new_h
padded = np.pad(resized, ((0, pad_h), (0, pad_w), (0, 0)), constant_values=0)
tensor = (padded.astype(np.float32) / 255.0)
tensor = np.transpose(tensor, (2, 0, 1))
tensors.append(tensor)
valid_indices.append(i)
crop_metadata.append({'orig_bbox': [x1, y1, x2, y2], 'effective_w': new_w})
if not tensors: return None, [], []
return np.stack(tensors, axis=0), valid_indices, crop_metadata
def postprocess_recognition_results(raw_rec_outputs, valid_indices, crop_metadata, rec_conf_threshold, num_total_boxes):
labels_batch, boxes_batch, scores_batch = raw_rec_outputs
full_results = [{'text': '', 'chars': []} for _ in range(num_total_boxes)]
for i, (labels, boxes, scores) in enumerate(zip(labels_batch, boxes_batch, scores_batch)):
meta = crop_metadata[i]
gx1, gy1, gx2, gy2 = meta['orig_bbox']
crop_w, crop_h = gx2 - gx1, gy2 - gy1
effective_w = meta['effective_w']
candidates = []
for lbl, box, scr in zip(labels, boxes, scores):
if scr < rec_conf_threshold: continue
char = chr(lbl)
rx1, ry1, rx2, ry2 = box
rx1, rx2 = min(rx1, effective_w), min(rx2, effective_w)
cx1, cx2 = (rx1 / effective_w) * crop_w, (rx2 / effective_w) * crop_w
cy1, cy2 = (ry1 / input_rec_height) * crop_h, (ry2 / input_rec_height) * crop_h
gx1_char, gy1_char = gx1 + int(cx1), gy1 + int(cy1)
gx2_char, gy2_char = gx1 + int(cx2), gy1 + int(cy2)
candidates.append({'char': char, 'bbox': [gx1_char, gy1_char, gx2_char, gy2_char], 'x_interval': (gx1_char, gx2_char), 'conf': float(scr)})
candidates.sort(key=lambda c: c['conf'], reverse=True)
accepted = []
for cand in candidates:
x1_c, x2_c = cand['x_interval']
width_c = x2_c - x1_c + epsilon
is_overlap = any((max(0, min(x2_c, x2_a) - max(x1_c, x1_a)) / width_c) > x_overlap_threshold for x1_a, x2_a in (acc['x_interval'] for acc in accepted))
if not is_overlap: accepted.append(cand)
accepted.sort(key=lambda c: c['x_interval'][0])
text = ''.join(c['char'] for c in accepted)
final_chars = [{'char': c['char'], 'bbox': c['bbox'], 'conf': c['conf']} for c in accepted]
full_results[valid_indices[i]] = {'text': text, 'chars': final_chars}
return full_results
# --- 3. main gradio processing function ---
def run_ocr_pipeline(input_image, det_threshold, rec_threshold):
if input_image is None:
raise gr.Error("please upload an image to process.")
det_input, sx, sy = preprocess_for_detection(input_image)
det_raw = det_session.run(None, {det_session.get_inputs()[0].name: det_input, det_session.get_inputs()[1].name: np.array([[input_det_width, input_det_height]], dtype=np.int64)})
text_boxes = postprocess_detection_results(det_raw, sx, sy, det_threshold)
if not text_boxes:
return input_image, "no text detected. try lowering the 'detection confidence' slider.", ""
rec_batch, valid_indices, crop_metadata = preprocess_for_recognition(input_image, text_boxes)
rec_raw = rec_session.run(None, {"images": rec_batch, "orig_target_sizes": np.array([[input_rec_width, input_rec_height]], dtype=np.int64)})
results = postprocess_recognition_results(rec_raw, valid_indices, crop_metadata, rec_threshold, len(text_boxes))
output_image = input_image.copy()
full_text = []
for res in results:
if res['text']: full_text.append(res['text'])
for char_info in res['chars']:
x1, y1, x2, y2 = char_info['bbox']
cv2.rectangle(output_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
json_output = json.dumps(results, indent=2, ensure_ascii=False)
return output_image, "\n".join(full_text), json_output
# --- 4. gradio interface definition ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# meikiocr: japanese video game ocr")
gr.Markdown(
"upload a screenshot from a japanese video game to see the high-accuracy ocr in action. "
"the pipeline first detects text lines, then recognizes the characters in each line. "
"adjust the confidence sliders if text is missed or incorrectly detected."
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="numpy", label="upload image")
det_threshold = gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.05, label="detection confidence")
rec_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="recognition confidence")
run_button = gr.Button("run ocr", variant="primary")
with gr.Column(scale=2):
output_image = gr.Image(type="numpy", label="ocr result")
output_text = gr.Textbox(label="recognized text", lines=5)
output_json = gr.Code(label="json output", language="json", lines=5)
def process_example(img):
# examples are pre-loaded as numpy by gradio, so we can pass them directly
return run_ocr_pipeline(img, 0.5, 0.1)
example_image_path = os.path.join(os.path.dirname(__file__), "example.jpg") # <-- updated filename
if os.path.exists(example_image_path):
gr.Examples(
examples=[example_image_path],
inputs=[input_image],
outputs=[output_image, output_text, output_json],
fn=process_example,
cache_examples=True
)
run_button.click(
fn=run_ocr_pipeline,
inputs=[input_image, det_threshold, rec_threshold],
outputs=[output_image, output_text, output_json]
)
# <-- a new markdown component is added here for the footer
gr.Markdown(
"""
---
### official github repository
the full source code, documentation, and local command-line script for `meikiocr` are available on github.
**► [github.com/rtr46/meikiocr](https://github.com/rtr46/meikiocr)**
"""
)
# --- 5. launch the app ---
demo.launch()