revert to old version
Browse files
app.py
CHANGED
|
@@ -1,77 +1,181 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import cv2
|
| 4 |
-
import
|
| 5 |
import os
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
try:
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
except Exception as e:
|
| 13 |
-
|
| 14 |
-
print(f"
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
def run_ocr_pipeline(input_image, det_threshold, rec_threshold):
|
| 19 |
-
"""
|
| 20 |
-
Takes a user-uploaded image and confidence thresholds, runs the OCR pipeline,
|
| 21 |
-
and returns the results formatted for the Gradio interface.
|
| 22 |
-
"""
|
| 23 |
if input_image is None:
|
| 24 |
-
raise gr.Error("
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
-
# Prepare the outputs for Gradio
|
| 32 |
output_image = input_image.copy()
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
if line_result['text']:
|
| 38 |
-
full_text_lines.append(line_result['text'])
|
| 39 |
-
# Draw a green rectangle for each recognized character
|
| 40 |
-
for char_info in line_result['chars']:
|
| 41 |
x1, y1, x2, y2 = char_info['bbox']
|
| 42 |
cv2.rectangle(output_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 43 |
|
| 44 |
-
# Format the full text and JSON output
|
| 45 |
-
recognized_text = "\n".join(full_text_lines)
|
| 46 |
json_output = json.dumps(results, indent=2, ensure_ascii=False)
|
| 47 |
|
| 48 |
-
return output_image,
|
|
|
|
|
|
|
| 49 |
|
| 50 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 51 |
-
gr.Markdown("# meikiocr:
|
| 52 |
gr.Markdown(
|
| 53 |
-
"
|
| 54 |
-
"
|
| 55 |
-
"
|
| 56 |
)
|
| 57 |
|
| 58 |
with gr.Row():
|
| 59 |
with gr.Column(scale=1):
|
| 60 |
-
input_image = gr.Image(type="numpy", label="
|
| 61 |
-
det_threshold = gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.05, label="
|
| 62 |
-
rec_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="
|
| 63 |
-
run_button = gr.Button("
|
| 64 |
|
| 65 |
with gr.Column(scale=2):
|
| 66 |
-
output_image = gr.Image(type="numpy", label="
|
| 67 |
-
output_text = gr.Textbox(label="
|
| 68 |
-
output_json = gr.Code(label="
|
| 69 |
|
| 70 |
-
# The function for handling examples is also simplified.
|
| 71 |
def process_example(img):
|
|
|
|
| 72 |
return run_ocr_pipeline(img, 0.5, 0.1)
|
| 73 |
|
| 74 |
-
# Load the example image if it exists
|
| 75 |
example_image_path = os.path.join(os.path.dirname(__file__), "example.jpg")
|
| 76 |
if os.path.exists(example_image_path):
|
| 77 |
gr.Examples(
|
|
@@ -82,7 +186,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 82 |
cache_examples=True
|
| 83 |
)
|
| 84 |
|
| 85 |
-
# Connect the button click to the main processing function
|
| 86 |
run_button.click(
|
| 87 |
fn=run_ocr_pipeline,
|
| 88 |
inputs=[input_image, det_threshold, rec_threshold],
|
|
@@ -92,10 +195,11 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 92 |
gr.Markdown(
|
| 93 |
"""
|
| 94 |
---
|
| 95 |
-
###
|
| 96 |
-
|
| 97 |
**[github.com/rtr46/meikiocr](https://github.com/rtr46/meikiocr)**
|
| 98 |
"""
|
| 99 |
)
|
| 100 |
|
|
|
|
| 101 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import onnxruntime as ort
|
| 3 |
import numpy as np
|
| 4 |
import cv2
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
import os
|
| 7 |
+
import json
|
| 8 |
+
|
| 9 |
+
# --- 1. configuration & model loading ---
|
| 10 |
+
# this section runs once when the space starts up.
|
| 11 |
+
|
| 12 |
+
print("loading models...")
|
| 13 |
+
|
| 14 |
+
# configuration
|
| 15 |
+
det_model_repo = "rtr46/meiki.text.detect.v0"
|
| 16 |
+
det_model_name = "meiki.text.detect.v0.1.960x544.onnx"
|
| 17 |
+
rec_model_repo = "rtr46/meiki.txt.recognition.v0"
|
| 18 |
+
rec_model_name = "meiki.text.rec.v0.960x32.onnx"
|
| 19 |
|
| 20 |
+
input_det_width = 960
|
| 21 |
+
input_det_height = 544
|
| 22 |
+
input_rec_height = 32
|
| 23 |
+
input_rec_width = 960
|
| 24 |
+
x_overlap_threshold = 0.3
|
| 25 |
+
epsilon = 1e-6
|
| 26 |
+
|
| 27 |
+
# load models from the hub
|
| 28 |
try:
|
| 29 |
+
det_model_path = hf_hub_download(repo_id=det_model_repo, filename=det_model_name)
|
| 30 |
+
rec_model_path = hf_hub_download(repo_id=rec_model_repo, filename=rec_model_name)
|
| 31 |
+
|
| 32 |
+
# use cpu execution provider for broad compatibility in spaces
|
| 33 |
+
providers = ['CPUExecutionProvider']
|
| 34 |
+
det_session = ort.InferenceSession(det_model_path, providers=providers)
|
| 35 |
+
rec_session = ort.InferenceSession(rec_model_path, providers=providers)
|
| 36 |
+
|
| 37 |
+
print("models loaded successfully.")
|
| 38 |
except Exception as e:
|
| 39 |
+
det_session, rec_session = None, None
|
| 40 |
+
print(f"error loading models: {e}")
|
| 41 |
+
raise gr.Error(f"failed to load models. please check space logs. error: {e}")
|
| 42 |
+
|
| 43 |
+
# --- 2. ocr pipeline helper functions ---
|
| 44 |
+
# (these functions remain unchanged)
|
| 45 |
+
|
| 46 |
+
def preprocess_for_detection(image):
|
| 47 |
+
h_orig, w_orig, _ = image.shape
|
| 48 |
+
resized = cv2.resize(image, (input_det_width, input_det_height), interpolation=cv2.INTER_LINEAR)
|
| 49 |
+
input_tensor = resized.astype(np.float32) / 255.0
|
| 50 |
+
input_tensor = np.transpose(input_tensor, (2, 0, 1))
|
| 51 |
+
input_tensor = np.expand_dims(input_tensor, axis=0)
|
| 52 |
+
scale_x = w_orig / input_det_width
|
| 53 |
+
scale_y = h_orig / input_det_height
|
| 54 |
+
return input_tensor, scale_x, scale_y
|
| 55 |
+
|
| 56 |
+
def postprocess_detection_results(raw_outputs, scale_x, scale_y, conf_threshold):
|
| 57 |
+
_, boxes, scores = raw_outputs
|
| 58 |
+
boxes, scores = boxes[0], scores[0]
|
| 59 |
+
text_boxes = []
|
| 60 |
+
for box, score in zip(boxes, scores):
|
| 61 |
+
if score < conf_threshold: continue
|
| 62 |
+
x1, y1, x2, y2 = box
|
| 63 |
+
x1_orig, y1_orig = int(x1 * scale_x), int(y1 * scale_y)
|
| 64 |
+
x2_orig, y2_orig = int(x2 * scale_x), int(y2 * scale_y)
|
| 65 |
+
text_boxes.append({'bbox': [x1_orig, y1_orig, x2_orig, y2_orig]})
|
| 66 |
+
text_boxes.sort(key=lambda tb: tb['bbox'][1])
|
| 67 |
+
return text_boxes
|
| 68 |
+
|
| 69 |
+
def preprocess_for_recognition(image, text_boxes):
|
| 70 |
+
tensors, valid_indices, crop_metadata = [], [], []
|
| 71 |
+
for i, tb in enumerate(text_boxes):
|
| 72 |
+
x1, y1, x2, y2 = tb['bbox']
|
| 73 |
+
width, height = x2 - x1, y2 - y1
|
| 74 |
+
if width < height or width == 0 or height == 0: continue
|
| 75 |
+
crop = image[y1:y2, x1:x2]
|
| 76 |
+
h, w, _ = crop.shape
|
| 77 |
+
new_h, new_w = input_rec_height, int(round(w * (input_rec_height / h)))
|
| 78 |
+
if new_w > input_rec_width:
|
| 79 |
+
scale = input_rec_width / new_w
|
| 80 |
+
new_w, new_h = input_rec_width, int(round(new_h * scale))
|
| 81 |
+
resized = cv2.resize(crop, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
|
| 82 |
+
pad_w, pad_h = input_rec_width - new_w, input_rec_height - new_h
|
| 83 |
+
padded = np.pad(resized, ((0, pad_h), (0, pad_w), (0, 0)), constant_values=0)
|
| 84 |
+
tensor = (padded.astype(np.float32) / 255.0)
|
| 85 |
+
tensor = np.transpose(tensor, (2, 0, 1))
|
| 86 |
+
tensors.append(tensor)
|
| 87 |
+
valid_indices.append(i)
|
| 88 |
+
crop_metadata.append({'orig_bbox': [x1, y1, x2, y2], 'effective_w': new_w})
|
| 89 |
+
if not tensors: return None, [], []
|
| 90 |
+
return np.stack(tensors, axis=0), valid_indices, crop_metadata
|
| 91 |
+
|
| 92 |
+
def postprocess_recognition_results(raw_rec_outputs, valid_indices, crop_metadata, rec_conf_threshold, num_total_boxes):
|
| 93 |
+
labels_batch, boxes_batch, scores_batch = raw_rec_outputs
|
| 94 |
+
full_results = [{'text': '', 'chars': []} for _ in range(num_total_boxes)]
|
| 95 |
+
for i, (labels, boxes, scores) in enumerate(zip(labels_batch, boxes_batch, scores_batch)):
|
| 96 |
+
meta = crop_metadata[i]
|
| 97 |
+
gx1, gy1, gx2, gy2 = meta['orig_bbox']
|
| 98 |
+
crop_w, crop_h = gx2 - gx1, gy2 - gy1
|
| 99 |
+
effective_w = meta['effective_w']
|
| 100 |
+
candidates = []
|
| 101 |
+
for lbl, box, scr in zip(labels, boxes, scores):
|
| 102 |
+
if scr < rec_conf_threshold: continue
|
| 103 |
+
char = chr(lbl)
|
| 104 |
+
rx1, ry1, rx2, ry2 = box
|
| 105 |
+
rx1, rx2 = min(rx1, effective_w), min(rx2, effective_w)
|
| 106 |
+
cx1, cx2 = (rx1 / effective_w) * crop_w, (rx2 / effective_w) * crop_w
|
| 107 |
+
cy1, cy2 = (ry1 / input_rec_height) * crop_h, (ry2 / input_rec_height) * crop_h
|
| 108 |
+
gx1_char, gy1_char = gx1 + int(cx1), gy1 + int(cy1)
|
| 109 |
+
gx2_char, gy2_char = gx1 + int(cx2), gy1 + int(cy2)
|
| 110 |
+
candidates.append({'char': char, 'bbox': [gx1_char, gy1_char, gx2_char, gy2_char], 'x_interval': (gx1_char, gx2_char), 'conf': float(scr)})
|
| 111 |
+
candidates.sort(key=lambda c: c['conf'], reverse=True)
|
| 112 |
+
accepted = []
|
| 113 |
+
for cand in candidates:
|
| 114 |
+
x1_c, x2_c = cand['x_interval']
|
| 115 |
+
width_c = x2_c - x1_c + epsilon
|
| 116 |
+
is_overlap = any((max(0, min(x2_c, x2_a) - max(x1_c, x1_a)) / width_c) > x_overlap_threshold for x1_a, x2_a in (acc['x_interval'] for acc in accepted))
|
| 117 |
+
if not is_overlap: accepted.append(cand)
|
| 118 |
+
accepted.sort(key=lambda c: c['x_interval'][0])
|
| 119 |
+
text = ''.join(c['char'] for c in accepted)
|
| 120 |
+
final_chars = [{'char': c['char'], 'bbox': c['bbox'], 'conf': c['conf']} for c in accepted]
|
| 121 |
+
full_results[valid_indices[i]] = {'text': text, 'chars': final_chars}
|
| 122 |
+
return full_results
|
| 123 |
+
|
| 124 |
+
# --- 3. main gradio processing function ---
|
| 125 |
|
| 126 |
def run_ocr_pipeline(input_image, det_threshold, rec_threshold):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
if input_image is None:
|
| 128 |
+
raise gr.Error("please upload an image to process.")
|
| 129 |
+
|
| 130 |
+
det_input, sx, sy = preprocess_for_detection(input_image)
|
| 131 |
+
det_raw = det_session.run(None, {det_session.get_inputs()[0].name: det_input, det_session.get_inputs()[1].name: np.array([[input_det_width, input_det_height]], dtype=np.int64)})
|
| 132 |
+
text_boxes = postprocess_detection_results(det_raw, sx, sy, det_threshold)
|
| 133 |
|
| 134 |
+
if not text_boxes:
|
| 135 |
+
return input_image, "no text detected. try lowering the 'detection confidence' slider.", ""
|
| 136 |
|
| 137 |
+
rec_batch, valid_indices, crop_metadata = preprocess_for_recognition(input_image, text_boxes)
|
| 138 |
+
rec_raw = rec_session.run(None, {"images": rec_batch, "orig_target_sizes": np.array([[input_rec_width, input_rec_height]], dtype=np.int64)})
|
| 139 |
+
results = postprocess_recognition_results(rec_raw, valid_indices, crop_metadata, rec_threshold, len(text_boxes))
|
| 140 |
|
|
|
|
| 141 |
output_image = input_image.copy()
|
| 142 |
+
full_text = []
|
| 143 |
+
for res in results:
|
| 144 |
+
if res['text']: full_text.append(res['text'])
|
| 145 |
+
for char_info in res['chars']:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
x1, y1, x2, y2 = char_info['bbox']
|
| 147 |
cv2.rectangle(output_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 148 |
|
|
|
|
|
|
|
| 149 |
json_output = json.dumps(results, indent=2, ensure_ascii=False)
|
| 150 |
|
| 151 |
+
return output_image, "\n".join(full_text), json_output
|
| 152 |
+
|
| 153 |
+
# --- 4. gradio interface definition ---
|
| 154 |
|
| 155 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 156 |
+
gr.Markdown("# meikiocr: japanese video game ocr")
|
| 157 |
gr.Markdown(
|
| 158 |
+
"upload a screenshot from a japanese video game to see the high-accuracy ocr in action. "
|
| 159 |
+
"the pipeline first detects text lines, then recognizes the characters in each line. "
|
| 160 |
+
"adjust the confidence sliders if text is missed or incorrectly detected."
|
| 161 |
)
|
| 162 |
|
| 163 |
with gr.Row():
|
| 164 |
with gr.Column(scale=1):
|
| 165 |
+
input_image = gr.Image(type="numpy", label="upload image")
|
| 166 |
+
det_threshold = gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.05, label="detection confidence")
|
| 167 |
+
rec_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="recognition confidence")
|
| 168 |
+
run_button = gr.Button("run ocr", variant="primary")
|
| 169 |
|
| 170 |
with gr.Column(scale=2):
|
| 171 |
+
output_image = gr.Image(type="numpy", label="ocr result")
|
| 172 |
+
output_text = gr.Textbox(label="recognized text", lines=5)
|
| 173 |
+
output_json = gr.Code(label="json output", language="json", lines=5)
|
| 174 |
|
|
|
|
| 175 |
def process_example(img):
|
| 176 |
+
# examples are pre-loaded as numpy by gradio, so we can pass them directly
|
| 177 |
return run_ocr_pipeline(img, 0.5, 0.1)
|
| 178 |
|
|
|
|
| 179 |
example_image_path = os.path.join(os.path.dirname(__file__), "example.jpg")
|
| 180 |
if os.path.exists(example_image_path):
|
| 181 |
gr.Examples(
|
|
|
|
| 186 |
cache_examples=True
|
| 187 |
)
|
| 188 |
|
|
|
|
| 189 |
run_button.click(
|
| 190 |
fn=run_ocr_pipeline,
|
| 191 |
inputs=[input_image, det_threshold, rec_threshold],
|
|
|
|
| 195 |
gr.Markdown(
|
| 196 |
"""
|
| 197 |
---
|
| 198 |
+
### official github repository
|
| 199 |
+
the full source code, documentation, and local command-line script for `meikiocr` are available on github.
|
| 200 |
**[github.com/rtr46/meikiocr](https://github.com/rtr46/meikiocr)**
|
| 201 |
"""
|
| 202 |
)
|
| 203 |
|
| 204 |
+
# --- 5. launch the app ---
|
| 205 |
demo.launch()
|