Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,24 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import plotly.express as px
|
|
|
|
| 5 |
|
| 6 |
# ------------------------------
|
| 7 |
# Load pretrained models
|
| 8 |
# ------------------------------
|
|
|
|
| 9 |
text_classifier = pipeline(
|
| 10 |
"text-classification",
|
| 11 |
model="j-hartmann/emotion-english-distilroberta-base",
|
| 12 |
top_k=None # returns all scores
|
| 13 |
)
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
)
|
| 19 |
|
| 20 |
# ------------------------------
|
| 21 |
# Map emotion to emoji
|
|
@@ -27,11 +30,7 @@ EMOJI_MAP = {
|
|
| 27 |
"joy": "π",
|
| 28 |
"neutral": "π",
|
| 29 |
"sadness": "π’",
|
| 30 |
-
"surprise": "π²"
|
| 31 |
-
"hap": "π", # for audio model
|
| 32 |
-
"neu": "π",
|
| 33 |
-
"sad": "π’",
|
| 34 |
-
"ang": "π‘"
|
| 35 |
}
|
| 36 |
|
| 37 |
# ------------------------------
|
|
@@ -62,7 +61,7 @@ def fuse_predictions(text_preds=None, audio_preds=None, w_text=0.5, w_audio=0.5)
|
|
| 62 |
return {"fused_label": best[0], "fused_score": round(best[1], 3), "all_scores": scores}
|
| 63 |
|
| 64 |
# ------------------------------
|
| 65 |
-
#
|
| 66 |
# ------------------------------
|
| 67 |
def make_bar_chart(scores_dict, title="Emotion Scores"):
|
| 68 |
df = pd.DataFrame({
|
|
@@ -77,22 +76,37 @@ def make_bar_chart(scores_dict, title="Emotion Scores"):
|
|
| 77 |
return fig
|
| 78 |
|
| 79 |
# ------------------------------
|
| 80 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
# ------------------------------
|
| 82 |
def predict(text, audio, w_text, w_audio):
|
| 83 |
text_preds, audio_preds = None, None
|
|
|
|
| 84 |
if text:
|
| 85 |
-
text_preds = text_classifier(text)
|
| 86 |
if audio:
|
| 87 |
-
audio_preds =
|
|
|
|
| 88 |
fused = fuse_predictions(text_preds, audio_preds, w_text, w_audio)
|
| 89 |
|
| 90 |
-
#
|
| 91 |
label = fused['fused_label']
|
| 92 |
-
emoji = EMOJI_MAP.get(label, "")
|
| 93 |
-
final_emotion = f"###
|
|
|
|
| 94 |
|
| 95 |
-
#
|
| 96 |
charts = []
|
| 97 |
if text_preds:
|
| 98 |
charts.append(make_bar_chart({p['label']: p['score'] for p in text_preds}, "Text Emotion Scores"))
|
|
@@ -100,10 +114,10 @@ def predict(text, audio, w_text, w_audio):
|
|
| 100 |
charts.append(make_bar_chart({p['label']: p['score'] for p in audio_preds}, "Audio Emotion Scores"))
|
| 101 |
charts.append(make_bar_chart(fused['all_scores'], "Fused Emotion Scores"))
|
| 102 |
|
| 103 |
-
return final_emotion, charts
|
| 104 |
|
| 105 |
# ------------------------------
|
| 106 |
-
# Build Gradio
|
| 107 |
# ------------------------------
|
| 108 |
with gr.Blocks() as demo:
|
| 109 |
gr.Markdown("## π Multimodal Emotion Classification (Text + Speech)")
|
|
@@ -112,13 +126,13 @@ with gr.Blocks() as demo:
|
|
| 112 |
with gr.Column():
|
| 113 |
txt = gr.Textbox(label="Text input", placeholder="Type something emotional...")
|
| 114 |
aud = gr.Audio(type="filepath", label="Upload speech (wav/mp3)")
|
| 115 |
-
w1 = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Text weight
|
| 116 |
-
w2 = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Audio weight
|
| 117 |
btn = gr.Button("Predict")
|
| 118 |
with gr.Column():
|
| 119 |
-
final_label = gr.
|
| 120 |
chart_output = gr.Plot(label="Emotion Scores")
|
| 121 |
|
| 122 |
-
btn.click(fn=predict, inputs=[txt, aud, w1, w2], outputs=[final_label, chart_output])
|
| 123 |
|
| 124 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline, Wav2Vec2ForSequenceClassification, Wav2Vec2Processor
|
| 3 |
+
import torch
|
| 4 |
import pandas as pd
|
| 5 |
import plotly.express as px
|
| 6 |
+
import soundfile as sf
|
| 7 |
|
| 8 |
# ------------------------------
|
| 9 |
# Load pretrained models
|
| 10 |
# ------------------------------
|
| 11 |
+
# Text classifier
|
| 12 |
text_classifier = pipeline(
|
| 13 |
"text-classification",
|
| 14 |
model="j-hartmann/emotion-english-distilroberta-base",
|
| 15 |
top_k=None # returns all scores
|
| 16 |
)
|
| 17 |
|
| 18 |
+
# Audio classifier (Wav2Vec2)
|
| 19 |
+
audio_model_name = "Dpngtm/wav2vec2-emotion-recognition"
|
| 20 |
+
audio_processor = Wav2Vec2Processor.from_pretrained(audio_model_name)
|
| 21 |
+
audio_model = Wav2Vec2ForSequenceClassification.from_pretrained(audio_model_name)
|
| 22 |
|
| 23 |
# ------------------------------
|
| 24 |
# Map emotion to emoji
|
|
|
|
| 30 |
"joy": "π",
|
| 31 |
"neutral": "π",
|
| 32 |
"sadness": "π’",
|
| 33 |
+
"surprise": "π²"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
}
|
| 35 |
|
| 36 |
# ------------------------------
|
|
|
|
| 61 |
return {"fused_label": best[0], "fused_score": round(best[1], 3), "all_scores": scores}
|
| 62 |
|
| 63 |
# ------------------------------
|
| 64 |
+
# Bar chart function
|
| 65 |
# ------------------------------
|
| 66 |
def make_bar_chart(scores_dict, title="Emotion Scores"):
|
| 67 |
df = pd.DataFrame({
|
|
|
|
| 76 |
return fig
|
| 77 |
|
| 78 |
# ------------------------------
|
| 79 |
+
# Audio prediction helper
|
| 80 |
+
# ------------------------------
|
| 81 |
+
def predict_audio(audio_file):
|
| 82 |
+
speech, sr = sf.read(audio_file)
|
| 83 |
+
inputs = audio_processor(speech, sampling_rate=sr, return_tensors="pt", padding=True)
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
logits = audio_model(**inputs).logits
|
| 86 |
+
probs = torch.nn.functional.softmax(logits, dim=-1).squeeze().tolist()
|
| 87 |
+
labels = [audio_model.config.id2label[i] for i in range(len(probs))]
|
| 88 |
+
return [{"label": l, "score": s} for l, s in zip(labels, probs)]
|
| 89 |
+
|
| 90 |
+
# ------------------------------
|
| 91 |
+
# Gradio prediction function
|
| 92 |
# ------------------------------
|
| 93 |
def predict(text, audio, w_text, w_audio):
|
| 94 |
text_preds, audio_preds = None, None
|
| 95 |
+
|
| 96 |
if text:
|
| 97 |
+
text_preds = text_classifier(text)
|
| 98 |
if audio:
|
| 99 |
+
audio_preds = predict_audio(audio)
|
| 100 |
+
|
| 101 |
fused = fuse_predictions(text_preds, audio_preds, w_text, w_audio)
|
| 102 |
|
| 103 |
+
# Final emotion with animated emoji
|
| 104 |
label = fused['fused_label']
|
| 105 |
+
emoji = EMOJI_MAP.get(label, "β")
|
| 106 |
+
final_emotion = f"### {label.upper()} {emoji} \nScore: {fused['fused_score']}"
|
| 107 |
+
animation = f"<div style='font-size:80px; animation: bounce 1s infinite;'>{emoji}</div>"
|
| 108 |
|
| 109 |
+
# Charts
|
| 110 |
charts = []
|
| 111 |
if text_preds:
|
| 112 |
charts.append(make_bar_chart({p['label']: p['score'] for p in text_preds}, "Text Emotion Scores"))
|
|
|
|
| 114 |
charts.append(make_bar_chart({p['label']: p['score'] for p in audio_preds}, "Audio Emotion Scores"))
|
| 115 |
charts.append(make_bar_chart(fused['all_scores'], "Fused Emotion Scores"))
|
| 116 |
|
| 117 |
+
return final_emotion + animation, charts
|
| 118 |
|
| 119 |
# ------------------------------
|
| 120 |
+
# Build Gradio app
|
| 121 |
# ------------------------------
|
| 122 |
with gr.Blocks() as demo:
|
| 123 |
gr.Markdown("## π Multimodal Emotion Classification (Text + Speech)")
|
|
|
|
| 126 |
with gr.Column():
|
| 127 |
txt = gr.Textbox(label="Text input", placeholder="Type something emotional...")
|
| 128 |
aud = gr.Audio(type="filepath", label="Upload speech (wav/mp3)")
|
| 129 |
+
w1 = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Text weight")
|
| 130 |
+
w2 = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Audio weight")
|
| 131 |
btn = gr.Button("Predict")
|
| 132 |
with gr.Column():
|
| 133 |
+
final_label = gr.HTML(label="Predicted Emotion")
|
| 134 |
chart_output = gr.Plot(label="Emotion Scores")
|
| 135 |
|
| 136 |
+
btn.click(fn=predict, inputs=[txt, aud, w1, w2], outputs=[final_label, chart_output]*3)
|
| 137 |
|
| 138 |
demo.launch()
|