Spaces:
Sleeping
Sleeping
Create Test.py
Browse files
Test.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
import spaces
|
| 5 |
+
|
| 6 |
+
model_name = "Sakalti/SakalFusion-7B-Alpha"
|
| 7 |
+
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 9 |
+
model_name,
|
| 10 |
+
torch_dtype=torch.bfloat16,
|
| 11 |
+
device_map="auto"
|
| 12 |
+
)
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 14 |
+
|
| 15 |
+
@spaces.gpu(duration=100)
|
| 16 |
+
def generate(prompt, history, top_p, top_k, max_new_tokens, repetition_penalty, temperature):
|
| 17 |
+
messages = [
|
| 18 |
+
{"role": "system", "content": "γγͺγγ―γγ¬γ³γγͺγΌγͺγγ£γγγγγγ§γγ"},
|
| 19 |
+
{"role": "user", "content": prompt}
|
| 20 |
+
]
|
| 21 |
+
text = tokenizer.apply_chat_template(
|
| 22 |
+
messages,
|
| 23 |
+
tokenize=False,
|
| 24 |
+
add_generation_prompt=True
|
| 25 |
+
)
|
| 26 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 27 |
+
|
| 28 |
+
generated_ids = model.generate(
|
| 29 |
+
**model_inputs,
|
| 30 |
+
max_new_tokens=max_new_tokens,
|
| 31 |
+
top_p=top_p,
|
| 32 |
+
top_k=top_k,
|
| 33 |
+
repetition_penalty=repetition_penalty,
|
| 34 |
+
temperature=temperature
|
| 35 |
+
)
|
| 36 |
+
generated_ids = [
|
| 37 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 41 |
+
return response, history + [[prompt, response]]
|
| 42 |
+
|
| 43 |
+
with gr.Blocks() as demo:
|
| 44 |
+
chatbot = gr.Chatbot()
|
| 45 |
+
msg = gr.Textbox()
|
| 46 |
+
clear = gr.Button("Clear")
|
| 47 |
+
|
| 48 |
+
with gr.Row():
|
| 49 |
+
top_p = gr.Slider(0.0, 1.0, value=0.9, label="Top P")
|
| 50 |
+
top_k = gr.Slider(0, 100, value=50, label="Top K")
|
| 51 |
+
max_new_tokens = gr.Slider(1, 2048, value=864, label="Max New Tokens")
|
| 52 |
+
repetition_penalty = gr.Slider(1.0, 2.0, value=1.2, label="Repetition Penalty")
|
| 53 |
+
temperature = gr.Slider(0.1, 1.0, value=0.7, label="Temperature")
|
| 54 |
+
|
| 55 |
+
def respond(message, chat_history, top_p, top_k, max_new_tokens, repetition_penalty, temperature):
|
| 56 |
+
bot_message, chat_history = generate(message, chat_history, top_p, top_k, max_new_tokens, repetition_penalty, temperature)
|
| 57 |
+
return "", chat_history, chat_history
|
| 58 |
+
|
| 59 |
+
msg.submit(respond, [msg, chatbot, top_p, top_k, max_new_tokens, repetition_penalty, temperature], [msg, chatbot, chatbot])
|
| 60 |
+
clear.click(lambda: ([], []), None, [chatbot, msg])
|
| 61 |
+
|
| 62 |
+
demo.launch(share=True)
|