File size: 6,437 Bytes
735732c
 
 
 
 
 
 
 
 
 
d717701
 
735732c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f65b441
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import gradio as gr
import requests
import os
from dotenv import load_dotenv
from groq import Groq
import pandas as pd
from datetime import datetime, timedelta


# API Keys from .env file
ALPHA_VANTAGE_API_KEY = os.environ.get("ALPHA_VANTAGE_API_KEY")
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")

# Initialize Groq client
groq_client = Groq(api_key=GROQ_API_KEY)

# Get RSI data from Alpha Vantage
def get_rsi_data(stock_symbol):
    url = f"https://www.alphavantage.co/query?function=RSI&symbol={stock_symbol}&interval=daily&time_period=14&series_type=close&apikey={ALPHA_VANTAGE_API_KEY}"
    
    response = requests.get(url)
    data = response.json()
    
    try:
        if "Note" in data:
            return f"API Limit Reached: {data['Note']}", None
            
        latest_date = list(data["Technical Analysis: RSI"].keys())[0]
        rsi = float(data["Technical Analysis: RSI"][latest_date]["RSI"])
        
        result = f"Symbol: {stock_symbol}\n"
        result += f"Date: {latest_date}\n"
        result += f"RSI: {rsi:.2f}\n"
        
        if rsi < 30:
            initial_recommendation = "Potentially Oversold"
        elif rsi > 70:
            initial_recommendation = "Potentially Overbought"
        else:
            initial_recommendation = "Neutral RSI"
            
        result += f"Technical Indicator: {initial_recommendation}\n"
        return result, rsi
        
    except Exception as e:
        return f"Error fetching RSI data: {data.get('Note', str(e))}", None

# Get time series data from Alpha Vantage
def get_time_series_data(stock_symbol):
    url = f"https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={stock_symbol}&outputsize=compact&apikey={ALPHA_VANTAGE_API_KEY}"
    
    response = requests.get(url)
    data = response.json()
    
    try:
        if "Note" in data:
            return f"API Limit Reached: {data['Note']}"
            
        if "Error Message" in data:
            return f"Error: {data['Error Message']}"
            
        time_series = data.get("Time Series (Daily)", {})
        if not time_series:
            return "Error: No time series data available"
            
        # Get recent data (last 10 trading days)
        dates = list(time_series.keys())[:10]
        
        # Format time series data
        result = f"\nRecent Price History for {stock_symbol}:\n"
        
        # Calculate some basic metrics
        closing_prices = []
        
        for date in dates:
            close_price = float(time_series[date]['4. close'])
            closing_prices.append(close_price)
            
            # Only add the last 5 days to keep the text shorter
            if len(closing_prices) <= 5:
                result += f"{date}: Close ${close_price:.2f}\n"
        
        # Calculate some trends
        if len(closing_prices) >= 2:
            latest_price = closing_prices[0]
            prev_price = closing_prices[1]
            day_change = (latest_price - prev_price) / prev_price * 100
            
            if len(closing_prices) >= 5:
                five_day_change = (latest_price - closing_prices[4]) / closing_prices[4] * 100
                result += f"\n5-Day Change: {five_day_change:.2f}%\n"
                
            result += f"1-Day Change: {day_change:.2f}%\n"
            
        return result
        
    except Exception as e:
        return f"Error fetching time series data: {str(e)}"

# Get LLM recommendation from Groq
def get_llm_recommendation(stock_symbol, rsi_data, time_series_data):
    if "Error" in rsi_data or "API Limit" in rsi_data:
        return rsi_data
    
    prompt = f"""
    As a financial advisor, analyze the following data for {stock_symbol}:
    
    RSI TECHNICAL DATA:
    {rsi_data}
    
    PRICE HISTORY:
    {time_series_data}
    
    Based on both the RSI technical indicator and the recent price history, provide a comprehensive recommendation (buy, sell, or hold) with a short explanation.
    Consider price trends, momentum, and RSI values in your analysis.
    Keep your response concise (3-5 sentences maximum).
    """
    
    try:
        # Using the Groq client instead of direct API calls
        completion = groq_client.chat.completions.create(
            model="llama-3.3-70b-versatile",
            messages=[
                {"role": "user", "content": prompt}
            ],
            temperature=0.7,
            max_tokens=150
        )
        
        # Extract the recommendation
        recommendation = completion.choices[0].message.content.strip()
        return recommendation
            
    except Exception as e:
        return f"Error from LLM service: {str(e)}"

# Main function for Gradio
def get_stock_recommendation(stock_symbol):
    # Get RSI data
    rsi_data, rsi_value = get_rsi_data(stock_symbol)
    
    # If there was an error, just return the error
    if rsi_value is None:
        return rsi_data, "Could not analyze without valid RSI data."
    
    # Get time series data
    time_series_data = get_time_series_data(stock_symbol)
    
    # Combine the data for display
    combined_data = rsi_data + "\n" + time_series_data
        
    # Get LLM recommendation
    llm_recommendation = get_llm_recommendation(stock_symbol, rsi_data, time_series_data)
    
    return combined_data, llm_recommendation

# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("## 📊 Enhanced Stock Analyzer")
    gr.Markdown("Uses RSI + Time Series data with LLaMA AI analysis")
    
    with gr.Row():
        stock_input = gr.Textbox(label="Enter Stock Symbol (e.g., AAPL, MSFT, GOOG)")
        submit_button = gr.Button("Analyze", variant="primary")
        
    with gr.Row():
        with gr.Column():
            technical_output = gr.Textbox(label="Technical Data", lines=12)
        with gr.Column():
            llm_output = gr.Textbox(label="LLaMA AI Recommendation", lines=12)
    
    gr.Markdown("*Note: Using Alpha Vantage (technical data) and Groq's LLaMA (AI recommendations)*")
    
    submit_button.click(
        fn=get_stock_recommendation, 
        inputs=stock_input, 
        outputs=[technical_output, llm_output]
    )

if __name__ == "__main__":
    if not ALPHA_VANTAGE_API_KEY or not GROQ_API_KEY:
        print("Error: Please ensure your API keys are set in the .env file")
        print("ALPHA_VANTAGE_API_KEY and GROQ_API_KEY are required")
    else:
        demo.launch()