Spaces:
Running
Running
shibing624
commited on
Commit
·
55292dd
1
Parent(s):
2f789a3
add app
Browse files- app.py +57 -4
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,7 +1,60 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import operator
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import BertTokenizer, BertForMaskedLM
|
| 5 |
|
| 6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 7 |
+
tokenizer = BertTokenizer.from_pretrained("shibing624/macbert4csc-base-chinese")
|
| 8 |
+
model = BertForMaskedLM.from_pretrained("shibing624/macbert4csc-base-chinese")
|
| 9 |
+
model.to(device)
|
| 10 |
|
| 11 |
+
|
| 12 |
+
def ai_text(texts):
|
| 13 |
+
with torch.no_grad():
|
| 14 |
+
outputs = model(**tokenizer(texts, padding=True, return_tensors='pt').to(device))
|
| 15 |
+
|
| 16 |
+
def get_errors(corrected_text, origin_text):
|
| 17 |
+
sub_details = []
|
| 18 |
+
for i, ori_char in enumerate(origin_text):
|
| 19 |
+
if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']:
|
| 20 |
+
# add unk word
|
| 21 |
+
corrected_text = corrected_text[:i] + ori_char + corrected_text[i:]
|
| 22 |
+
continue
|
| 23 |
+
if i >= len(corrected_text):
|
| 24 |
+
continue
|
| 25 |
+
if ori_char != corrected_text[i]:
|
| 26 |
+
if ori_char.lower() == corrected_text[i]:
|
| 27 |
+
# pass english upper char
|
| 28 |
+
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
|
| 29 |
+
continue
|
| 30 |
+
sub_details.append((ori_char, corrected_text[i], i, i + 1))
|
| 31 |
+
sub_details = sorted(sub_details, key=operator.itemgetter(2))
|
| 32 |
+
return corrected_text, sub_details
|
| 33 |
+
|
| 34 |
+
result = []
|
| 35 |
+
for ids, text in zip(outputs.logits, texts):
|
| 36 |
+
_text = tokenizer.decode(torch.argmax(ids, dim=-1), skip_special_tokens=True).replace(' ', '')
|
| 37 |
+
corrected_text = _text[:len(text)]
|
| 38 |
+
corrected_text, details = get_errors(corrected_text, text)
|
| 39 |
+
print(text, ' => ', corrected_text, details)
|
| 40 |
+
result.append((corrected_text, details))
|
| 41 |
+
print(result)
|
| 42 |
+
return result
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
examples = [
|
| 46 |
+
['真麻烦你了。希望你们好好的跳无'],
|
| 47 |
+
['少先队员因该为老人让坐'],
|
| 48 |
+
['机七学习是人工智能领遇最能体现智能的一个分知'],
|
| 49 |
+
['今天心情很好',
|
| 50 |
+
'老是较书。'],
|
| 51 |
+
['遇到一位很棒的奴生跟我聊天。'],
|
| 52 |
+
['他的语说的很好,法语也不错'],
|
| 53 |
+
['他法语说的很好,的语也不错'],
|
| 54 |
+
['他们的吵翻很不错,再说他们做的咖喱鸡也好吃'],
|
| 55 |
+
['不过在许多传统国家,女人向未得到平等'],
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
output_text = gr.outputs.Textbox()
|
| 59 |
+
gr.Interface(ai_text, "textbox", output_text, title="Chinese Text Correction shibing624/macbert4csc-base-chinese",
|
| 60 |
+
description="Copy or input error Chinese text. Submit and the machine will correct text.", examples=examples).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
transformers
|