Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,8 @@ import gradio as gr
|
|
| 3 |
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
| 4 |
import nltk
|
| 5 |
nltk.download('vader_lexicon')
|
|
|
|
|
|
|
| 6 |
|
| 7 |
zero_shot_classifier = pipeline("zero-shot-classification" , model='roberta-large-mnli')
|
| 8 |
|
|
@@ -13,6 +15,11 @@ issues = ["Misconduct" , "Negligence" , "Discrimination" , "Corruption" , "Viola
|
|
| 13 |
|
| 14 |
apprecn = ["Tech-Savvy Staff" , "Co-operative Staff" , "Well-Maintained Premises" , "Responsive Staff"]
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def spam_detection(input_text):
|
| 17 |
|
| 18 |
return spam_detector(input_text)[0]['label'] == 'clean'
|
|
@@ -43,6 +50,8 @@ def negative_zero_shot(input_text):
|
|
| 43 |
return zero_shot_classifier(input_text , candidate_labels = issues , multi_label = False)['labels'][0]
|
| 44 |
|
| 45 |
def pipeline(input_text):
|
|
|
|
|
|
|
| 46 |
|
| 47 |
if spam_detection(input_text):
|
| 48 |
|
|
|
|
| 3 |
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
| 4 |
import nltk
|
| 5 |
nltk.download('vader_lexicon')
|
| 6 |
+
from deep_translator import (GoogleTranslator)
|
| 7 |
+
from langdetect import detect
|
| 8 |
|
| 9 |
zero_shot_classifier = pipeline("zero-shot-classification" , model='roberta-large-mnli')
|
| 10 |
|
|
|
|
| 15 |
|
| 16 |
apprecn = ["Tech-Savvy Staff" , "Co-operative Staff" , "Well-Maintained Premises" , "Responsive Staff"]
|
| 17 |
|
| 18 |
+
def translate(input_text):
|
| 19 |
+
source_lang = detect(input_text)
|
| 20 |
+
translated = GoogleTranslator(source=source_lang, target='en').translate(text=input_text)
|
| 21 |
+
return translated
|
| 22 |
+
|
| 23 |
def spam_detection(input_text):
|
| 24 |
|
| 25 |
return spam_detector(input_text)[0]['label'] == 'clean'
|
|
|
|
| 50 |
return zero_shot_classifier(input_text , candidate_labels = issues , multi_label = False)['labels'][0]
|
| 51 |
|
| 52 |
def pipeline(input_text):
|
| 53 |
+
|
| 54 |
+
input_text = translate(input_text)
|
| 55 |
|
| 56 |
if spam_detection(input_text):
|
| 57 |
|