Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import matplotlib
|
| 3 |
+
|
| 4 |
+
matplotlib.use("Agg")
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from sklearn import datasets
|
| 8 |
+
from sklearn import linear_model
|
| 9 |
+
from sklearn.svm import l1_min_c
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def train_it(solver, intersect_scaling, tol, max_iter):
|
| 13 |
+
iris = datasets.load_iris()
|
| 14 |
+
X = iris.data
|
| 15 |
+
y = iris.target
|
| 16 |
+
|
| 17 |
+
X = X[y != 2]
|
| 18 |
+
y = y[y != 2]
|
| 19 |
+
|
| 20 |
+
X /= X.max()
|
| 21 |
+
|
| 22 |
+
cs = l1_min_c(X, y, loss="log") * np.logspace(0, 7, 16)
|
| 23 |
+
|
| 24 |
+
clf = linear_model.LogisticRegression(
|
| 25 |
+
penalty="l1",
|
| 26 |
+
solver=solver,
|
| 27 |
+
tol=tol,
|
| 28 |
+
max_iter=int(max_iter),
|
| 29 |
+
warm_start=True,
|
| 30 |
+
intercept_scaling=intersect_scaling,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
coefs_ = []
|
| 34 |
+
for c in cs:
|
| 35 |
+
clf.set_params(C=c)
|
| 36 |
+
clf.fit(X, y)
|
| 37 |
+
coefs_.append(clf.coef_.ravel().copy())
|
| 38 |
+
|
| 39 |
+
coefs_ = np.array(coefs_)
|
| 40 |
+
|
| 41 |
+
plt.plot(np.log10(cs), coefs_, marker="o")
|
| 42 |
+
ymin, ymax = plt.ylim()
|
| 43 |
+
plt.xlabel("log(C)")
|
| 44 |
+
plt.ylabel("Coefficients")
|
| 45 |
+
plt.title("Logistic Regression Path")
|
| 46 |
+
plt.axis("tight")
|
| 47 |
+
plt.show()
|
| 48 |
+
|
| 49 |
+
return plt
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
with gr.Blocks() as demo:
|
| 53 |
+
gr.Markdown("# Regularization path of L1- Logistic Regression")
|
| 54 |
+
gr.Markdown(
|
| 55 |
+
"""
|
| 56 |
+
This interactive demo is based on the [Regularization path of L1- Logistic Regression] (https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_path.html).This demonstrates how to perform l1-penalized logistic regression on a binary classification problem derived from the Iris dataset. The regularization path plots the progression of the coefficients from exactly 0 to non-zero values as the regularization becomes progressively looser.
|
| 57 |
+
"""
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
with gr.Row():
|
| 61 |
+
with gr.Column():
|
| 62 |
+
solver = gr.Dropdown(
|
| 63 |
+
["liblinear", "saga"], label="Solver", value="liblinear"
|
| 64 |
+
)
|
| 65 |
+
warm_start = gr.Dropdown(
|
| 66 |
+
["True", "False"], label="Warm Start", value="True"
|
| 67 |
+
)
|
| 68 |
+
with gr.Column(align="center"):
|
| 69 |
+
intersect_scaling = gr.Slider(
|
| 70 |
+
value=10000.0,
|
| 71 |
+
minimum=0,
|
| 72 |
+
maximum=100000,
|
| 73 |
+
step=0.1,
|
| 74 |
+
label="Intersect Scaling",
|
| 75 |
+
)
|
| 76 |
+
tol = gr.Slider(
|
| 77 |
+
value=1e-6, minimum=0, maximum=1, step=0.1, label="Tolerance"
|
| 78 |
+
)
|
| 79 |
+
max_iter = gr.Slider(
|
| 80 |
+
value=1e6,
|
| 81 |
+
minimum=0,
|
| 82 |
+
maximum=1000000,
|
| 83 |
+
step=0.1,
|
| 84 |
+
label="Maximum Iterations",
|
| 85 |
+
)
|
| 86 |
+
train_buttion = gr.Button(label="Train")
|
| 87 |
+
|
| 88 |
+
train_buttion.click(
|
| 89 |
+
train_it, inputs=[solver, intersect_scaling, tol, max_iter], outputs=gr.Plot()
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
demo.launch()
|