import cv2 import mediapipe as mp import numpy as np import gradio as gr mp_pose = mp.solutions.pose pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) mp_drawing = mp.solutions.drawing_utils def calculate_angle(a, b, c): a, b, c = np.array(a), np.array(b), np.array(c) radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0]) return np.abs(radians * 180.0 / np.pi) def check_pullup_feedback(landmarks): shoulder = [landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].x, landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y] elbow = [landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value].x, landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value].y] wrist = [landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x, landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y] angle = calculate_angle(shoulder, elbow, wrist) target_angle = 70 tolerance = 20 accuracy = max(0, min(100, (1 - abs(angle - target_angle) / tolerance) * 100)) if angle > (target_angle + tolerance / 2): feedback = ("Incomplete Pull-up - Your elbows remain too extended. Engage your back muscles to pull higher.") elif angle < (target_angle - tolerance / 2): feedback = ("Over-bending - Your elbows are too flexed. Try to control your descent.") else: feedback = "Correct Pull-up - Great form!" return feedback, int(accuracy) def draw_accuracy_bar(image, accuracy): bar_x, bar_y = 50, image.shape[0] - 50 bar_width, bar_height = 200, 20 fill_width = int((accuracy / 100) * bar_width) color = (0, 255, 0) if accuracy >= 80 else (0, 0, 255) if accuracy < 50 else (0, 255, 255) cv2.rectangle(image, (bar_x, bar_y), (bar_x + bar_width, bar_y + bar_height), (200,200,200), 2) cv2.rectangle(image, (bar_x, bar_y), (bar_x + fill_width, bar_y + bar_height), color, -1) cv2.putText(image, f"Accuracy: {accuracy}%", (bar_x, bar_y-10), cv2.FONT_HERSHEY_DUPLEX, 0.6, (255,255,255), 2) def analyze_pullups(video_path): cap = cv2.VideoCapture(video_path) frame_width, frame_height = int(cap.get(3)), int(cap.get(4)) fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 30 output_video = "output_pullups.mp4" fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_video, fourcc, fps, (frame_width, frame_height)) while cap.isOpened(): ret, frame = cap.read() if not ret: break image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = pose.process(image) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) if results.pose_landmarks: mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS) landmarks = results.pose_landmarks.landmark feedback, accuracy = check_pullup_feedback(landmarks) draw_accuracy_bar(image, accuracy) text_color = (0, 255, 0) if "Correct" in feedback else (0, 0, 255) cv2.putText(image, feedback, (50, 50), cv2.FONT_HERSHEY_COMPLEX, 1, text_color, 3) out.write(image) cap.release() out.release() return output_video gr.Interface( fn=analyze_pullups, inputs=gr.Video(), outputs=gr.Video(), title="Pull-ups Form Analyzer", description="Upload a video of your pull-ups and receive form feedback!" ).launch()