Spaces:
Runtime error
Runtime error
[clean]: removed chunks
Browse files- sentiment.py +3 -99
sentiment.py
CHANGED
|
@@ -1,51 +1,28 @@
|
|
| 1 |
import numpy as np # For linear algebra
|
| 2 |
import pandas as pd # Data processing, CSV file I/O (e.g. pd.read_csv)
|
| 3 |
import matplotlib.pyplot as plt # For Visualisation
|
| 4 |
-
# get_ipython().run_line_magic('matplotlib', 'inline')
|
| 5 |
import seaborn as sns # For Visualisation
|
| 6 |
from bs4 import BeautifulSoup # For Text Parsing
|
| 7 |
|
| 8 |
|
| 9 |
# # IMPORTING DATASET
|
| 10 |
|
| 11 |
-
# In[2]:
|
| 12 |
-
|
| 13 |
-
|
| 14 |
data = pd.read_csv('Reviews.csv')
|
| 15 |
# data
|
| 16 |
|
| 17 |
|
| 18 |
# # DATA PREPROCESSING & VISUALISATION
|
| 19 |
|
| 20 |
-
# In[3]:
|
| 21 |
-
|
| 22 |
-
|
| 23 |
#data.isnull().sum()
|
| 24 |
|
| 25 |
-
|
| 26 |
-
# In[4]:
|
| 27 |
-
|
| 28 |
-
|
| 29 |
data=data.dropna()
|
| 30 |
#data.isnull().sum()
|
| 31 |
|
| 32 |
-
|
| 33 |
-
# In[5]:
|
| 34 |
-
|
| 35 |
-
|
| 36 |
#data.shape
|
| 37 |
|
| 38 |
-
|
| 39 |
-
# In[6]:
|
| 40 |
-
|
| 41 |
-
|
| 42 |
score_unique = data['Score'].unique()
|
| 43 |
#print(score_unique)
|
| 44 |
|
| 45 |
-
|
| 46 |
-
# In[7]:
|
| 47 |
-
|
| 48 |
-
|
| 49 |
# 0-> NEGATIVE REVIEW
|
| 50 |
# 1-> NEUTRAL REVIEW
|
| 51 |
# 2-> POSTIVE REVIEW
|
|
@@ -58,10 +35,6 @@ for i in data['Score']:
|
|
| 58 |
if i>3:
|
| 59 |
a.append(2)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
# In[8]:
|
| 63 |
-
|
| 64 |
-
|
| 65 |
r_0, r_1, r_2 = 0, 0, 0
|
| 66 |
for i in a:
|
| 67 |
if i == 0:
|
|
@@ -75,10 +48,6 @@ for i in a:
|
|
| 75 |
# print('Neutral Reviews:',r_1)
|
| 76 |
# print('Positive Reviews:',r_2)
|
| 77 |
|
| 78 |
-
|
| 79 |
-
# In[9]:
|
| 80 |
-
|
| 81 |
-
|
| 82 |
# sns.countplot(a)
|
| 83 |
# plt.xlabel('Reviews', color = 'red')
|
| 84 |
# plt.ylabel('Count', color = 'red')
|
|
@@ -86,42 +55,22 @@ for i in a:
|
|
| 86 |
# plt.title('COUNT PLOT', color = 'r')
|
| 87 |
# plt.show()
|
| 88 |
|
| 89 |
-
|
| 90 |
-
# In[10]:
|
| 91 |
-
|
| 92 |
-
|
| 93 |
data['sentiment']=a
|
| 94 |
#data
|
| 95 |
final_dataset = data[['Text','sentiment']]
|
| 96 |
#final_dataset
|
| 97 |
|
| 98 |
-
|
| 99 |
-
# In[11]:
|
| 100 |
-
|
| 101 |
-
|
| 102 |
data_p=final_dataset[data['sentiment']==2]
|
| 103 |
data_n=final_dataset[data['sentiment']==0]
|
| 104 |
#len(data_p), len(data_n)
|
| 105 |
|
| 106 |
-
|
| 107 |
-
# In[12]:
|
| 108 |
-
|
| 109 |
-
|
| 110 |
datap = data_p.iloc[np.random.randint(1,443766,5000), :]
|
| 111 |
datan = data_n.iloc[np.random.randint(1, 82007,5000), :]
|
| 112 |
#len(datan), len(datap)
|
| 113 |
|
| 114 |
-
|
| 115 |
-
# In[13]:
|
| 116 |
-
|
| 117 |
-
|
| 118 |
data = pd.concat([datap,datan])
|
| 119 |
len(data)
|
| 120 |
|
| 121 |
-
|
| 122 |
-
# In[14]:
|
| 123 |
-
|
| 124 |
-
|
| 125 |
c=[]
|
| 126 |
for i in data['sentiment']:
|
| 127 |
if i==0:
|
|
@@ -130,17 +79,6 @@ for i in data['sentiment']:
|
|
| 130 |
c.append(1)
|
| 131 |
data['sentiment']=c
|
| 132 |
|
| 133 |
-
|
| 134 |
-
# In[15]:
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
# sns.countplot(data['sentiment'])
|
| 138 |
-
# plt.show()
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
# In[16]:
|
| 142 |
-
|
| 143 |
-
|
| 144 |
def strip_html(text):
|
| 145 |
soup = BeautifulSoup(text, "html.parser")
|
| 146 |
return soup.get_text()
|
|
@@ -150,12 +88,6 @@ data=data.drop('Text',axis=1)
|
|
| 150 |
|
| 151 |
#data.head()
|
| 152 |
|
| 153 |
-
|
| 154 |
-
# # MODEL BUILDING
|
| 155 |
-
|
| 156 |
-
# In[17]:
|
| 157 |
-
|
| 158 |
-
|
| 159 |
import nltk #Natural Language Processing Toolkit
|
| 160 |
def punc_clean(text):
|
| 161 |
import string as st
|
|
@@ -164,10 +96,6 @@ def punc_clean(text):
|
|
| 164 |
data['review'] = data['review'].apply(punc_clean)
|
| 165 |
#data.head(2)
|
| 166 |
|
| 167 |
-
|
| 168 |
-
# In[18]:
|
| 169 |
-
|
| 170 |
-
|
| 171 |
def remove_stopword(text):
|
| 172 |
stopword=nltk.corpus.stopwords.words('english')
|
| 173 |
stopword.remove('not')
|
|
@@ -175,10 +103,6 @@ def remove_stopword(text):
|
|
| 175 |
return ' '.join(a)
|
| 176 |
#data['review'] = data['review'].apply(remove_stopword)
|
| 177 |
|
| 178 |
-
|
| 179 |
-
# In[19]:
|
| 180 |
-
|
| 181 |
-
|
| 182 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 183 |
|
| 184 |
vectr = TfidfVectorizer(ngram_range=(1,2),min_df=1)
|
|
@@ -187,9 +111,6 @@ vectr.fit(data['review'])
|
|
| 187 |
vect_X = vectr.transform(data['review'])
|
| 188 |
|
| 189 |
|
| 190 |
-
# In[20]:
|
| 191 |
-
|
| 192 |
-
|
| 193 |
from sklearn.linear_model import LogisticRegression
|
| 194 |
|
| 195 |
model = LogisticRegression()
|
|
@@ -200,28 +121,11 @@ clf=model.fit(vect_X,data['sentiment'])
|
|
| 200 |
|
| 201 |
# # PREDICTION
|
| 202 |
|
| 203 |
-
#
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
clf.predict(vectr.transform(['''Nice look and build quality with moderately fast everything such as refresh rate, display quality, sound, processing, gaming experience and many more ..
|
| 207 |
-
I didn't find any lagging or heating issue..And battery health I won't say great but I'll take that
|
| 208 |
-
|
| 209 |
-
Only cons I can say about it is camera.. sharpening picture a little much at day light and low light photo you have to compromise.''']))
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
# In[22]:
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
clf.predict(vectr.transform(['''Phone has bugs , and screen quality is poor , Avoid realme. Gaming was just over hyped''']))
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
# In[23]:
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
clf.predict(vectr.transform(['''No lags found super speed and very good performance nice phone in this budget''']))
|
| 222 |
|
|
|
|
| 223 |
|
| 224 |
-
#
|
| 225 |
|
| 226 |
|
| 227 |
|
|
|
|
| 1 |
import numpy as np # For linear algebra
|
| 2 |
import pandas as pd # Data processing, CSV file I/O (e.g. pd.read_csv)
|
| 3 |
import matplotlib.pyplot as plt # For Visualisation
|
|
|
|
| 4 |
import seaborn as sns # For Visualisation
|
| 5 |
from bs4 import BeautifulSoup # For Text Parsing
|
| 6 |
|
| 7 |
|
| 8 |
# # IMPORTING DATASET
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
data = pd.read_csv('Reviews.csv')
|
| 11 |
# data
|
| 12 |
|
| 13 |
|
| 14 |
# # DATA PREPROCESSING & VISUALISATION
|
| 15 |
|
|
|
|
|
|
|
|
|
|
| 16 |
#data.isnull().sum()
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
data=data.dropna()
|
| 19 |
#data.isnull().sum()
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
#data.shape
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
score_unique = data['Score'].unique()
|
| 24 |
#print(score_unique)
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
# 0-> NEGATIVE REVIEW
|
| 27 |
# 1-> NEUTRAL REVIEW
|
| 28 |
# 2-> POSTIVE REVIEW
|
|
|
|
| 35 |
if i>3:
|
| 36 |
a.append(2)
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
r_0, r_1, r_2 = 0, 0, 0
|
| 39 |
for i in a:
|
| 40 |
if i == 0:
|
|
|
|
| 48 |
# print('Neutral Reviews:',r_1)
|
| 49 |
# print('Positive Reviews:',r_2)
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
# sns.countplot(a)
|
| 52 |
# plt.xlabel('Reviews', color = 'red')
|
| 53 |
# plt.ylabel('Count', color = 'red')
|
|
|
|
| 55 |
# plt.title('COUNT PLOT', color = 'r')
|
| 56 |
# plt.show()
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
data['sentiment']=a
|
| 59 |
#data
|
| 60 |
final_dataset = data[['Text','sentiment']]
|
| 61 |
#final_dataset
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
data_p=final_dataset[data['sentiment']==2]
|
| 64 |
data_n=final_dataset[data['sentiment']==0]
|
| 65 |
#len(data_p), len(data_n)
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
datap = data_p.iloc[np.random.randint(1,443766,5000), :]
|
| 68 |
datan = data_n.iloc[np.random.randint(1, 82007,5000), :]
|
| 69 |
#len(datan), len(datap)
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
data = pd.concat([datap,datan])
|
| 72 |
len(data)
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
c=[]
|
| 75 |
for i in data['sentiment']:
|
| 76 |
if i==0:
|
|
|
|
| 79 |
c.append(1)
|
| 80 |
data['sentiment']=c
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
def strip_html(text):
|
| 83 |
soup = BeautifulSoup(text, "html.parser")
|
| 84 |
return soup.get_text()
|
|
|
|
| 88 |
|
| 89 |
#data.head()
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
import nltk #Natural Language Processing Toolkit
|
| 92 |
def punc_clean(text):
|
| 93 |
import string as st
|
|
|
|
| 96 |
data['review'] = data['review'].apply(punc_clean)
|
| 97 |
#data.head(2)
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
def remove_stopword(text):
|
| 100 |
stopword=nltk.corpus.stopwords.words('english')
|
| 101 |
stopword.remove('not')
|
|
|
|
| 103 |
return ' '.join(a)
|
| 104 |
#data['review'] = data['review'].apply(remove_stopword)
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 107 |
|
| 108 |
vectr = TfidfVectorizer(ngram_range=(1,2),min_df=1)
|
|
|
|
| 111 |
vect_X = vectr.transform(data['review'])
|
| 112 |
|
| 113 |
|
|
|
|
|
|
|
|
|
|
| 114 |
from sklearn.linear_model import LogisticRegression
|
| 115 |
|
| 116 |
model = LogisticRegression()
|
|
|
|
| 121 |
|
| 122 |
# # PREDICTION
|
| 123 |
|
| 124 |
+
# clf.predict(vectr.transform(['''Nice look and build quality with moderately fast everything such as refresh rate, display quality, sound, processing, gaming experience and many more .. I didn't find any lagging or heating issue..And battery health I won't say great but I'll take that, Only cons I can say about it is camera.. sharpening picture a little much at day light and low light photo you have to compromise.''']))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
# clf.predict(vectr.transform(['''Phone has bugs , and screen quality is poor , Avoid realme. Gaming was just over hyped''']))
|
| 127 |
|
| 128 |
+
# clf.predict(vectr.transform(['''No lags found super speed and very good performance nice phone in this budget''']))
|
| 129 |
|
| 130 |
|
| 131 |
|