Spaces:
Running
Running
File size: 26,335 Bytes
33d8b39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 |
import os
import uuid
import sqlite3
import io
import csv
import zipfile
import re
import difflib
from typing import List, Optional, Dict, Any
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from langdetect import detect
from transformers import MarianMTModel, MarianTokenizer
# ======================================================
# 0) Configuración general
# ======================================================
# Modelo NL→SQL entrenado por ti en Hugging Face
MODEL_DIR = os.getenv("MODEL_DIR", "stvnnnnnn/t5-large-nl2sql-spider")
DEVICE = torch.device("cpu") # inferencia en CPU
# Directorio donde se guardan las BDs convertidas a SQLite
UPLOAD_DIR = os.getenv("UPLOAD_DIR", "uploaded_dbs")
os.makedirs(UPLOAD_DIR, exist_ok=True)
# Registro en memoria de conexiones (todas terminan siendo SQLite)
# { conn_id: { "db_path": str, "label": str } }
DB_REGISTRY: Dict[str, Dict[str, Any]] = {}
# ======================================================
# 1) Inicialización de FastAPI
# ======================================================
app = FastAPI(
title="NL2SQL T5-large Backend Universal (single-file)",
description=(
"Intérprete NL→SQL (T5-large Spider) para usuarios no expertos. "
"El usuario solo sube su BD (SQLite / dump .sql / CSV / ZIP de CSVs) "
"y todo se convierte internamente a SQLite."
),
version="1.0.0",
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # en producción puedes acotar a tu dominio
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ======================================================
# 2) Modelo NL→SQL y traductor ES→EN
# ======================================================
t5_tokenizer = None
t5_model = None
mt_tokenizer = None
mt_model = None
def load_nl2sql_model():
"""Carga el modelo NL→SQL (T5-large fine-tuned en Spider) desde HF Hub."""
global t5_tokenizer, t5_model
if t5_model is not None:
return
print(f"🔁 Cargando modelo NL→SQL desde: {MODEL_DIR}")
t5_tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, use_fast=True)
t5_model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_DIR, torch_dtype=torch.float32)
t5_model.to(DEVICE)
t5_model.eval()
print("✅ Modelo NL→SQL listo en memoria.")
def load_es_en_translator():
"""Carga el modelo Helsinki-NLP para traducción ES→EN (solo una vez)."""
global mt_tokenizer, mt_model
if mt_model is not None:
return
model_name = "Helsinki-NLP/opus-mt-es-en"
print(f"🔁 Cargando traductor ES→EN: {model_name}")
mt_tokenizer = MarianTokenizer.from_pretrained(model_name)
mt_model = MarianMTModel.from_pretrained(model_name)
mt_model.to(DEVICE)
mt_model.eval()
print("✅ Traductor ES→EN listo.")
def detect_language(text: str) -> str:
try:
return detect(text)
except Exception:
return "unknown"
def translate_es_to_en(text: str) -> str:
"""
Usa Marian ES→EN solo si el texto se detecta como español ('es').
Si no, devuelve el texto tal cual.
"""
lang = detect_language(text)
if lang != "es":
return text
if mt_model is None:
load_es_en_translator()
inputs = mt_tokenizer(text, return_tensors="pt", truncation=True).to(DEVICE)
with torch.no_grad():
out = mt_model.generate(**inputs, max_length=256)
return mt_tokenizer.decode(out[0], skip_special_tokens=True)
# ======================================================
# 3) Utilidades de BDs: creación/ingesta a SQLite
# ======================================================
def _sanitize_identifier(name: str) -> str:
"""Hace un nombre de tabla/columna seguro para SQLite."""
base = name.strip().replace(" ", "_")
base = re.sub(r"[^0-9a-zA-Z_]", "_", base)
if not base:
base = "table"
if base[0].isdigit():
base = "_" + base
return base
def create_empty_sqlite_db(label: str) -> str:
"""Crea un archivo .sqlite vacío y lo devuelve."""
conn_id = f"db_{uuid.uuid4().hex[:8]}"
db_filename = f"{conn_id}.sqlite"
db_path = os.path.join(UPLOAD_DIR, db_filename)
# Crear archivo vacío
conn = sqlite3.connect(db_path)
conn.close()
DB_REGISTRY[conn_id] = {"db_path": db_path, "label": label}
return conn_id
def import_sql_dump_to_sqlite(db_path: str, sql_text: str) -> None:
"""
Intenta importar un dump .sql (MySQL/PostgreSQL/SQLite) a SQLite.
Hace un preprocesado MUY simple para ignorar cosas específicas.
"""
lines = sql_text.splitlines()
cleaned_lines = []
for line in lines:
stripped = line.strip()
upper = stripped.upper()
# Ignorar líneas típicas de MySQL/Postgres que rompen en SQLite
if not stripped:
continue
if upper.startswith(("SET ", "LOCK TABLES", "UNLOCK TABLES",
"DELIMITER ", "USE ", "START TRANSACTION",
"COMMIT", "ROLLBACK")):
continue
if upper.startswith("--") or upper.startswith("/*") or upper.startswith("*"):
continue
if "OWNER TO" in upper:
continue
# Quitar /*! ... */ estilo MySQL
if stripped.startswith("/*!") and stripped.endswith("*/;"):
continue
# Reemplazar backticks de MySQL por nada
line = line.replace("`", "")
# Quitar cosas típicas de ENGINE=InnoDB, etc.
if "ENGINE=" in line.upper():
line = line.split("ENGINE=")[0].rstrip()
if not line.endswith(";"):
line += ";"
cleaned_lines.append(line)
cleaned_sql = "\n".join(cleaned_lines)
conn = sqlite3.connect(db_path)
try:
conn.executescript(cleaned_sql)
conn.commit()
finally:
conn.close()
def import_csv_to_sqlite(db_path: str, csv_bytes: bytes, table_name: str) -> None:
"""
Crea una tabla en SQLite con columnas TEXT y carga datos desde un CSV.
"""
table = _sanitize_identifier(table_name or "data")
conn = sqlite3.connect(db_path)
try:
f = io.StringIO(csv_bytes.decode("utf-8", errors="ignore"))
reader = csv.reader(f)
rows = list(reader)
if not rows:
return
header = rows[0]
cols = [_sanitize_identifier(c or f"col_{i}") for i, c in enumerate(header)]
# Crear tabla
col_defs = ", ".join(f'"{c}" TEXT' for c in cols)
conn.execute(f'CREATE TABLE IF NOT EXISTS "{table}" ({col_defs});')
# Insertar filas
placeholders = ", ".join(["?"] * len(cols))
for row in rows[1:]:
# Padding/truncado por seguridad
row = list(row) + [""] * (len(cols) - len(row))
row = row[:len(cols)]
conn.execute(
f'INSERT INTO "{table}" ({", ".join(cols)}) VALUES ({placeholders})',
row,
)
conn.commit()
finally:
conn.close()
def import_zip_of_csvs_to_sqlite(db_path: str, zip_bytes: bytes) -> None:
"""
Para un ZIP con múltiples CSV: cada CSV se vuelve una tabla.
"""
conn = sqlite3.connect(db_path)
conn.close() # solo asegurar que el archivo existe
with zipfile.ZipFile(io.BytesIO(zip_bytes)) as zf:
for name in zf.namelist():
if not name.lower().endswith(".csv"):
continue
with zf.open(name) as f:
csv_bytes = f.read()
base_name = os.path.basename(name)
table_name = os.path.splitext(base_name)[0]
import_csv_to_sqlite(db_path, csv_bytes, table_name)
# ======================================================
# 4) Introspección de esquema y ejecución (sobre SQLite)
# ======================================================
def introspect_sqlite_schema(db_path: str) -> Dict[str, Any]:
"""
Devuelve:
- tables: {table_name: {"columns": [col1, col2, ...]}}
- schema_str: "table(col1, col2) ; table2(...)"
"""
if not os.path.exists(db_path):
raise FileNotFoundError(f"SQLite no encontrado: {db_path}")
conn = sqlite3.connect(db_path)
cur = conn.cursor()
cur.execute("SELECT name FROM sqlite_master WHERE type='table';")
tables = [row[0] for row in cur.fetchall()]
tables_info: Dict[str, Dict[str, List[str]]] = {}
parts = []
for t in tables:
cur.execute(f"PRAGMA table_info('{t}');")
rows = cur.fetchall() # cid, name, type, notnull, dflt_value, pk
cols = [r[1] for r in rows]
tables_info[t] = {"columns": cols}
parts.append(f"{t}(" + ", ".join(cols) + ")")
conn.close()
schema_str = " ; ".join(parts) if parts else "(empty_schema)"
return {"tables": tables_info, "schema_str": schema_str}
def execute_sqlite(db_path: str, sql: str) -> Dict[str, Any]:
# Seguridad mínima para evitar queries destructivas
forbidden = ["drop ", "delete ", "update ", "insert ", "alter ", "replace "]
sql_low = sql.lower()
if any(f in sql_low for f in forbidden):
return {
"ok": False,
"error": "Query bloqueada por seguridad (operación destructiva).",
"rows": None,
"columns": []
}
try:
conn = sqlite3.connect(db_path)
cur = conn.cursor()
cur.execute(sql)
rows = cur.fetchall()
col_names = [desc[0] for desc in cur.description] if cur.description else []
conn.close()
return {"ok": True, "error": None, "rows": rows, "columns": col_names}
except Exception as e:
return {"ok": False, "error": str(e), "rows": None, "columns": []}
# ======================================================
# 4.1) SQL REPAIR LAYER (avanzado)
# ======================================================
def _normalize_name_for_match(name: str) -> str:
"""Normaliza un identificador (tabla/columna) para hacer matching difuso."""
s = name.lower()
s = s.replace('"', '').replace("`", "")
s = s.replace("_", "")
# singularización muy simple: tracks -> track, songs -> song, etc.
if s.endswith("s") and len(s) > 3:
s = s[:-1]
return s
def _build_schema_indexes(tables_info: Dict[str, Dict[str, List[str]]]) -> Dict[str, Dict[str, List[str]]]:
"""
Construye índices de nombres normalizados:
- table_index: {normalized: [table1, table2, ...]}
- column_index: {normalized: [col1, col2, ...]}
"""
table_index: Dict[str, List[str]] = {}
column_index: Dict[str, List[str]] = {}
for t, info in tables_info.items():
tn = _normalize_name_for_match(t)
table_index.setdefault(tn, [])
if t not in table_index[tn]:
table_index[tn].append(t)
for c in info.get("columns", []):
cn = _normalize_name_for_match(c)
column_index.setdefault(cn, [])
if c not in column_index[cn]:
column_index[cn].append(c)
return {"table_index": table_index, "column_index": column_index}
def _best_match_name(missing: str, index: Dict[str, List[str]]) -> Optional[str]:
"""
Dado un nombre ausente y un índice normalizado, devuelve el mejor match real.
"""
if not index:
return None
key = _normalize_name_for_match(missing)
# Si tenemos match directo
if key in index and index[key]:
return index[key][0]
# Matching difuso usando difflib
candidates = difflib.get_close_matches(key, list(index.keys()), n=1, cutoff=0.7)
if not candidates:
return None
best_key = candidates[0]
if index[best_key]:
return index[best_key][0]
return None
# Diccionarios de sinónimos comunes (Spider + Chinook / bases típicas)
DOMAIN_SYNONYMS_TABLE = {
"song": "track",
"songs": "track",
"tracks": "track",
"artist": "artist",
"artists": "artist",
"album": "album",
"albums": "album",
"order": "invoice",
"orders": "invoice",
}
DOMAIN_SYNONYMS_COLUMN = {
"song": "name",
"songs": "name",
"track": "name",
"title": "name",
"length": "milliseconds",
"duration": "milliseconds",
}
def try_repair_sql(sql: str, error: str, schema_meta: Dict[str, Any]) -> Optional[str]:
"""
Intenta reparar SQL a partir del mensaje de error y del esquema:
- no such table: X → mapear X a una tabla existente
- no such column: Y → mapear Y a una columna existente
Devuelve:
- nuevo SQL reparado (str) si pudo cambiar algo
- None si no se aplicó ninguna reparación
"""
tables_info = schema_meta["tables"]
idx = _build_schema_indexes(tables_info)
table_index = idx["table_index"]
column_index = idx["column_index"]
repaired_sql = sql
changed = False
# 1) Detectar faltas específicas por el mensaje de SQLite
missing_table = None
missing_column = None
m_t = re.search(r"no such table: ([\w\.]+)", error)
if m_t:
missing_table = m_t.group(1)
m_c = re.search(r"no such column: ([\w\.]+)", error)
if m_c:
missing_column = m_c.group(1)
# 2) Reparar tabla faltante
if missing_table:
short = missing_table.split(".")[-1] # si viene tipo T1.Songs
# Sinónimo de dominio primero (song -> track, etc.)
syn = DOMAIN_SYNONYMS_TABLE.get(short.lower())
target = None
if syn:
target = _best_match_name(syn, table_index) or syn
if not target:
target = _best_match_name(short, table_index)
if target:
pattern = r"\b" + re.escape(short) + r"\b"
new_sql = re.sub(pattern, target, repaired_sql)
if new_sql != repaired_sql:
repaired_sql = new_sql
changed = True
# 3) Reparar columna faltante
if missing_column:
short = missing_column.split(".")[-1]
syn = DOMAIN_SYNONYMS_COLUMN.get(short.lower())
target = None
if syn:
target = _best_match_name(syn, column_index) or syn
if not target:
target = _best_match_name(short, column_index)
if target:
pattern = r"\b" + re.escape(short) + r"\b"
new_sql = re.sub(pattern, target, repaired_sql)
if new_sql != repaired_sql:
repaired_sql = new_sql
changed = True
if not changed:
return None
return repaired_sql
# ======================================================
# 5) Construcción de prompt y NL→SQL + re-ranking
# ======================================================
def build_prompt(question_en: str, db_id: str, schema_str: str) -> str:
"""
Estilo de entrenamiento Spider:
translate to SQL: {question} | db: {db_id} | schema: {schema_str} | note: ...
"""
return (
f"translate to SQL: {question_en} | "
f"db: {db_id} | schema: {schema_str} | "
f"note: use JOIN when foreign keys link tables"
)
def nl2sql_with_rerank(question: str, conn_id: str) -> Dict[str, Any]:
"""
Pipeline completo:
- auto-idioma + ES→EN
- introspección de esquema
- generación con beams
- re-ranking según ejecución real en SQLite
- capa de SQL Repair (tablas/columnas inexistentes, hasta 3 intentos)
"""
if conn_id not in DB_REGISTRY:
raise HTTPException(status_code=404, detail=f"connection_id '{conn_id}' no registrado")
db_path = DB_REGISTRY[conn_id]["db_path"]
meta = introspect_sqlite_schema(db_path)
schema_str = meta["schema_str"]
detected = detect_language(question)
question_en = translate_es_to_en(question) if detected == "es" else question
prompt = build_prompt(question_en, db_id=conn_id, schema_str=schema_str)
if t5_model is None:
load_nl2sql_model()
inputs = t5_tokenizer([prompt], return_tensors="pt", truncation=True, max_length=768).to(DEVICE)
num_beams = 6
num_return = 6
with torch.no_grad():
out = t5_model.generate(
**inputs,
max_length=220,
num_beams=num_beams,
num_return_sequences=num_return,
return_dict_in_generate=True,
output_scores=True,
)
sequences = out.sequences
scores = out.sequences_scores
if scores is not None:
scores = scores.cpu().tolist()
else:
scores = [0.0] * sequences.size(0)
candidates: List[Dict[str, Any]] = []
best = None
best_exec = False
best_score = -1e9
for i in range(sequences.size(0)):
raw_sql = t5_tokenizer.decode(sequences[i], skip_special_tokens=True).strip()
cand: Dict[str, Any] = {
"sql": raw_sql,
"score": float(scores[i]),
"repaired_from": None,
"repair_note": None,
"raw_sql_model": raw_sql,
}
# Intento 1: ejecución directa
exec_info = execute_sqlite(db_path, raw_sql)
# Hasta 3 rondas de reparación si sigue fallando por no such table/column
if (not exec_info["ok"]) and (
"no such table" in (exec_info["error"] or "")
or "no such column" in (exec_info["error"] or "")
):
current_sql = raw_sql
last_error = exec_info["error"]
for step in range(1, 4): # step 1, 2, 3
repaired_sql = try_repair_sql(current_sql, last_error, meta)
if not repaired_sql or repaired_sql == current_sql:
break
exec_info2 = execute_sqlite(db_path, repaired_sql)
cand["repaired_from"] = current_sql if cand["repaired_from"] is None else cand["repaired_from"]
cand["repair_note"] = f"auto-repair (table/column name, step {step})"
cand["sql"] = repaired_sql
exec_info = exec_info2
current_sql = repaired_sql
if exec_info2["ok"]:
break
last_error = exec_info2["error"]
# Guardar info final de ejecución
cand["exec_ok"] = exec_info["ok"]
cand["exec_error"] = exec_info["error"]
cand["rows_preview"] = (
[list(r) for r in exec_info["rows"][:5]] if exec_info["ok"] and exec_info["rows"] else None
)
cand["columns"] = exec_info["columns"]
candidates.append(cand)
# Seleccionar "best"
if exec_info["ok"]:
if (not best_exec) or cand["score"] > best_score:
best_exec = True
best_score = cand["score"]
best = cand
elif not best_exec and cand["score"] > best_score:
best_score = cand["score"]
best = cand
if best is None and candidates:
best = candidates[0]
return {
"question_original": question,
"detected_language": detected,
"question_en": question_en,
"connection_id": conn_id,
"schema_summary": schema_str,
"best_sql": best["sql"],
"best_exec_ok": best.get("exec_ok", False),
"best_exec_error": best.get("exec_error"),
"best_rows_preview": best.get("rows_preview"),
"best_columns": best.get("columns", []),
"candidates": candidates,
}
# ======================================================
# 6) Schemas Pydantic
# ======================================================
class UploadResponse(BaseModel):
connection_id: str
label: str
db_path: str
note: Optional[str] = None
class ConnectionInfo(BaseModel):
connection_id: str
label: str
class SchemaResponse(BaseModel):
connection_id: str
schema_summary: str
tables: Dict[str, Dict[str, List[str]]]
class PreviewResponse(BaseModel):
connection_id: str
table: str
columns: List[str]
rows: List[List[Any]]
class InferRequest(BaseModel):
connection_id: str
question: str
class InferResponse(BaseModel):
question_original: str
detected_language: str
question_en: str
connection_id: str
schema_summary: str
best_sql: str
best_exec_ok: bool
best_exec_error: Optional[str]
best_rows_preview: Optional[List[List[Any]]]
best_columns: List[str]
candidates: List[Dict[str, Any]]
# ======================================================
# 7) Endpoints FastAPI
# ======================================================
@app.on_event("startup")
async def startup_event():
# Cargamos el modelo al inicio
load_nl2sql_model()
print(f"✅ Backend NL2SQL inicializado. MODEL_DIR={MODEL_DIR}, UPLOAD_DIR={UPLOAD_DIR}")
@app.post("/upload", response_model=UploadResponse)
async def upload_database(db_file: UploadFile = File(...)):
"""
Subida universal de BD.
El usuario puede subir:
- .sqlite / .db → se usa tal cual
- .sql → dump MySQL/PostgreSQL/SQLite → se importa a SQLite
- .csv → se crea una BD SQLite y una tabla
- .zip → múltiples CSV → múltiples tablas en una BD SQLite
Devuelve un connection_id para usar en /schema, /preview y /infer.
"""
filename = db_file.filename
if not filename:
raise HTTPException(status_code=400, detail="Archivo sin nombre.")
fname_lower = filename.lower()
contents = await db_file.read()
note = None
# Caso 1: SQLite nativa
if fname_lower.endswith(".sqlite") or fname_lower.endswith(".db"):
conn_id = f"db_{uuid.uuid4().hex[:8]}"
dst_path = os.path.join(UPLOAD_DIR, f"{conn_id}.sqlite")
with open(dst_path, "wb") as f:
f.write(contents)
DB_REGISTRY[conn_id] = {"db_path": dst_path, "label": filename}
note = "SQLite file stored as-is."
# Caso 2: dump .sql
elif fname_lower.endswith(".sql"):
conn_id = create_empty_sqlite_db(label=filename)
db_path = DB_REGISTRY[conn_id]["db_path"]
sql_text = contents.decode("utf-8", errors="ignore")
import_sql_dump_to_sqlite(db_path, sql_text)
note = "SQL dump imported into SQLite (best effort)."
# Caso 3: CSV simple
elif fname_lower.endswith(".csv"):
conn_id = create_empty_sqlite_db(label=filename)
db_path = DB_REGISTRY[conn_id]["db_path"]
table_name = os.path.splitext(os.path.basename(filename))[0]
import_csv_to_sqlite(db_path, contents, table_name)
note = "CSV imported into a single SQLite table."
# Caso 4: ZIP con CSVs
elif fname_lower.endswith(".zip"):
conn_id = create_empty_sqlite_db(label=filename)
db_path = DB_REGISTRY[conn_id]["db_path"]
import_zip_of_csvs_to_sqlite(db_path, contents)
note = "ZIP with CSVs imported into multiple SQLite tables."
else:
raise HTTPException(
status_code=400,
detail="Formato no soportado. Usa: .sqlite, .db, .sql, .csv o .zip",
)
return UploadResponse(
connection_id=conn_id,
label=DB_REGISTRY[conn_id]["label"],
db_path=DB_REGISTRY[conn_id]["db_path"],
note=note,
)
@app.get("/connections", response_model=List[ConnectionInfo])
async def list_connections():
"""
Lista las conexiones registradas (todas en SQLite interno).
"""
out = []
for cid, info in DB_REGISTRY.items():
out.append(ConnectionInfo(connection_id=cid, label=info["label"]))
return out
@app.get("/schema/{connection_id}", response_model=SchemaResponse)
async def get_schema(connection_id: str):
"""
Devuelve un resumen de esquema para una BD subida.
"""
if connection_id not in DB_REGISTRY:
raise HTTPException(status_code=404, detail="connection_id no encontrado")
db_path = DB_REGISTRY[connection_id]["db_path"]
meta = introspect_sqlite_schema(db_path)
return SchemaResponse(
connection_id=connection_id,
schema_summary=meta["schema_str"],
tables=meta["tables"],
)
@app.get("/preview/{connection_id}/{table}", response_model=PreviewResponse)
async def preview_table(connection_id: str, table: str, limit: int = 20):
"""
Devuelve un preview de filas de una tabla concreta.
Útil para el frontend (vista de tabla + diagrama).
"""
if connection_id not in DB_REGISTRY:
raise HTTPException(status_code=404, detail="connection_id no encontrado")
db_path = DB_REGISTRY[connection_id]["db_path"]
try:
conn = sqlite3.connect(db_path)
cur = conn.cursor()
cur.execute(f'SELECT * FROM "{table}" LIMIT {int(limit)};')
rows = cur.fetchall()
cols = [d[0] for d in cur.description] if cur.description else []
conn.close()
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error al leer tabla '{table}': {e}")
return PreviewResponse(
connection_id=connection_id,
table=table,
columns=cols,
rows=[list(r) for r in rows],
)
@app.post("/infer", response_model=InferResponse)
async def infer_sql(req: InferRequest):
"""
Dada una pregunta en lenguaje natural (ES o EN) y un connection_id,
genera SQL, ejecuta la consulta y devuelve el resultado + candidatos.
"""
result = nl2sql_with_rerank(req.question, req.connection_id)
return InferResponse(**result)
@app.get("/health")
async def health():
return {
"status": "ok",
"model_loaded": t5_model is not None,
"connections": len(DB_REGISTRY),
"device": str(DEVICE),
}
@app.get("/")
async def root():
return {
"message": "NL2SQL T5-large universal backend is running (single-file SQLite engine).",
"endpoints": [
"POST /upload (subir .sqlite / .db / .sql / .csv / .zip)",
"GET /connections (listar BDs subidas)",
"GET /schema/{id} (esquema resumido)",
"GET /preview/{id}/{t} (preview de tabla)",
"POST /infer (NL→SQL + ejecución)",
"GET /health (estado del backend)",
"GET /docs (OpenAPI UI)",
],
} |