stvnnnnnn's picture
Update app.py
9082c5a verified
raw
history blame
32.5 kB
import os
import uuid
import sqlite3
import io
import csv
import zipfile
import re
import difflib
import tempfile
import shutil
from typing import List, Optional, Dict, Any
from fastapi import FastAPI, UploadFile, File, HTTPException, Form
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from langdetect import detect
from transformers import MarianMTModel, MarianTokenizer
from openai import OpenAI
# ======================================================
# 0) Configuración general
# ======================================================
# Modelo NL→SQL entrenado por ti en Hugging Face
MODEL_DIR = os.getenv("MODEL_DIR", "stvnnnnnn/t5-large-nl2sql-spider")
DEVICE = torch.device("cpu") # inferencia en CPU
# Directorio donde se guardan las BDs convertidas a SQLite
UPLOAD_DIR = os.getenv("UPLOAD_DIR", "uploaded_dbs")
os.makedirs(UPLOAD_DIR, exist_ok=True)
# Registro en memoria de conexiones (todas terminan siendo SQLite)
# { conn_id: { "db_path": str, "label": str } }
DB_REGISTRY: Dict[str, Dict[str, Any]] = {}
# Cliente OpenAI para transcripción de audio (Whisper / gpt-4o-transcribe)
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
print("⚠️ OPENAI_API_KEY no está definido. El endpoint /speech-infer no funcionará hasta configurarlo.")
openai_client = OpenAI(api_key=OPENAI_API_KEY) if OPENAI_API_KEY else None
# ======================================================
# 1) Inicialización de FastAPI
# ======================================================
app = FastAPI(
title="NL2SQL T5-large Backend Universal (single-file)",
description=(
"Intérprete NL→SQL (T5-large Spider) para usuarios no expertos. "
"El usuario solo sube su BD (SQLite / dump .sql / CSV / ZIP de datos) "
"y todo se convierte internamente a SQLite."
),
version="1.0.0",
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # en producción puedes acotar a tu dominio
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ======================================================
# 2) Modelo NL→SQL y traductor ES→EN
# ======================================================
t5_tokenizer = None
t5_model = None
mt_tokenizer = None
mt_model = None
def load_nl2sql_model():
"""Carga el modelo NL→SQL (T5-large fine-tuned en Spider) desde HF Hub."""
global t5_tokenizer, t5_model
if t5_model is not None:
return
print(f"🔁 Cargando modelo NL→SQL desde: {MODEL_DIR}")
t5_tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, use_fast=True)
t5_model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_DIR, torch_dtype=torch.float32)
t5_model.to(DEVICE)
t5_model.eval()
print("✅ Modelo NL→SQL listo en memoria.")
def load_es_en_translator():
"""Carga el modelo Helsinki-NLP para traducción ES→EN (solo una vez)."""
global mt_tokenizer, mt_model
if mt_model is not None:
return
model_name = "Helsinki-NLP/opus-mt-es-en"
print(f"🔁 Cargando traductor ES→EN: {model_name}")
mt_tokenizer = MarianTokenizer.from_pretrained(model_name)
mt_model = MarianMTModel.from_pretrained(model_name)
mt_model.to(DEVICE)
mt_model.eval()
print("✅ Traductor ES→EN listo.")
def detect_language(text: str) -> str:
try:
return detect(text)
except Exception:
return "unknown"
def translate_es_to_en(text: str) -> str:
"""
Usa Marian ES→EN solo si el texto se detecta como español ('es').
Si no, devuelve el texto tal cual.
"""
lang = detect_language(text)
if lang != "es":
return text
if mt_model is None:
load_es_en_translator()
inputs = mt_tokenizer(text, return_tensors="pt", truncation=True).to(DEVICE)
with torch.no_grad():
out = mt_model.generate(**inputs, max_length=256)
return mt_tokenizer.decode(out[0], skip_special_tokens=True)
# ======================================================
# 3) Utilidades de BDs: creación/ingesta a SQLite
# ======================================================
def _sanitize_identifier(name: str) -> str:
"""Hace un nombre de tabla/columna seguro para SQLite."""
base = name.strip().replace(" ", "_")
base = re.sub(r"[^0-9a-zA-Z_]", "_", base)
if not base:
base = "table"
if base[0].isdigit():
base = "_" + base
return base
def create_empty_sqlite_db(label: str) -> str:
"""Crea un archivo .sqlite vacío y lo devuelve."""
conn_id = f"db_{uuid.uuid4().hex[:8]}"
db_filename = f"{conn_id}.sqlite"
db_path = os.path.join(UPLOAD_DIR, db_filename)
conn = sqlite3.connect(db_path)
conn.close()
DB_REGISTRY[conn_id] = {"db_path": db_path, "label": label}
return conn_id
def import_sql_dump_to_sqlite(db_path: str, sql_text: str) -> None:
"""
Convertidor avanzado MySQL → SQLite.
Limpia, reordena y ejecuta el schema de forma segura en SQLite.
"""
# ======================================================
# 1) Limpieza inicial del dump
# ======================================================
# Remover comentarios estilo MySQL
sql_text = re.sub(r"/\*![\s\S]*?\*/;", "", sql_text)
sql_text = re.sub(r"/\*[\s\S]*?\*/", "", sql_text)
sql_text = re.sub(r"--.*?\n", "", sql_text)
# Remover `DELIMITER` (no existe en SQLite)
sql_text = re.sub(r"DELIMITER\s+.+", "", sql_text)
# Quitar ENGINE, ROW_FORMAT, AUTO_INCREMENT
sql_text = re.sub(r"ENGINE=\w+", "", sql_text)
sql_text = re.sub(r"ROW_FORMAT=\w+", "", sql_text)
sql_text = re.sub(r"AUTO_INCREMENT=\d+", "", sql_text)
# Quitar COLLATE y CHARSET
sql_text = re.sub(r"DEFAULT CHARSET=\w+", "", sql_text)
sql_text = re.sub(r"CHARACTER SET \w+", "", sql_text)
sql_text = re.sub(r"COLLATE \w+", "", sql_text)
# Reemplazar backticks por comillas
sql_text = sql_text.replace("`", "")
# ======================================================
# 2) Dividir en statements individuales
# ======================================================
raw_statements = sql_text.split(";")
# Tablas para ejecutar CREATE TABLE sin foreign keys primero
create_tables = []
foreign_keys = []
inserts = []
others = []
for st in raw_statements:
stmt = st.strip()
if not stmt:
continue
upper = stmt.upper()
if upper.startswith("CREATE TABLE"):
# separar claves foráneas
if "FOREIGN KEY" in upper:
fixed = []
fk_lines = []
for line in stmt.split("\n"):
if "FOREIGN KEY" in line.upper():
fk_lines.append(line.strip().rstrip(","))
else:
fixed.append(line)
table_sql = "\n".join(fixed)
create_tables.append(table_sql)
foreign_keys.append((extract_table_name(stmt), fk_lines))
else:
create_tables.append(stmt)
elif upper.startswith("INSERT INTO"):
inserts.append(stmt)
else:
others.append(stmt)
# ======================================================
# 3) Convertir tipos MySQL → SQLite
# ======================================================
def convert_types(sql: str) -> str:
sql = re.sub(r"\bTINYINT\(1\)\b", "INTEGER", sql)
sql = re.sub(r"\bINT\b|\bINTEGER\b", "INTEGER", sql)
sql = re.sub(r"\bBIGINT\b", "INTEGER", sql)
sql = re.sub(r"\bDECIMAL\([0-9,]+\)", "REAL", sql)
sql = re.sub(r"\bDOUBLE\b|\bFLOAT\b", "REAL", sql)
sql = re.sub(r"\bDATETIME\b|\bTIMESTAMP\b", "TEXT", sql)
sql = re.sub(r"\bVARCHAR\([0-9]+\)", "TEXT", sql)
sql = re.sub(r"\bCHAR\([0-9]+\)", "TEXT", sql)
sql = re.sub(r"\bTEXT\b", "TEXT", sql)
sql = re.sub(r"\bUNSIGNED\b", "", sql)
return sql
create_tables = [convert_types(c) for c in create_tables]
inserts = [convert_types(i) for i in inserts]
# ======================================================
# 4) Ejecutar en orden
# ======================================================
conn = sqlite3.connect(db_path)
cur = conn.cursor()
cur.execute("PRAGMA foreign_keys = OFF;")
for ct in create_tables:
try:
cur.executescript(ct + ";")
except Exception as e:
print("Error CREATE TABLE:", e)
print("SQL:", ct)
for ins in inserts:
try:
cur.executescript(ins + ";")
except Exception as e:
print("Error INSERT:", e)
print("SQL:", ins)
# ======================================================
# 5) Reconstruir claves foráneas manualmente
# ======================================================
for table, fks in foreign_keys:
for fk in fks:
try:
add_foreign_key_sqlite(conn, table, fk)
except Exception as e:
print("Error agregando FK:", e, " → ", fk)
cur.execute("PRAGMA foreign_keys = ON;")
conn.commit()
conn.close()
def extract_table_name(create_stmt: str) -> str:
m = re.search(r"CREATE TABLE\s+(\w+)", create_stmt, re.IGNORECASE)
return m.group(1) if m else "unknown"
def add_foreign_key_sqlite(conn, table: str, fk_line: str):
"""
Reconstrucción automática:
- Lee schema actual
- Añade FK en nueva versión
- Copia datos
"""
cur = conn.cursor()
cur.execute(f"SELECT sql FROM sqlite_master WHERE type='table' AND name='{table}';")
result = cur.fetchone()
if not result:
return
original_sql = result[0]
new_sql = original_sql.rstrip(")") + f", {fk_line} )"
cur.execute(f"ALTER TABLE {table} RENAME TO _old_{table};")
cur.execute(new_sql)
cur.execute(f"INSERT INTO {table} SELECT * FROM _old_{table};")
cur.execute(f"DROP TABLE _old_{table};")
conn.commit()
def import_csv_to_sqlite(db_path: str, csv_bytes: bytes, table_name: str) -> None:
"""
Crea una tabla en SQLite con columnas TEXT y carga datos desde un CSV.
"""
table = _sanitize_identifier(table_name or "data")
conn = sqlite3.connect(db_path)
try:
f = io.StringIO(csv_bytes.decode("utf-8", errors="ignore"))
reader = csv.reader(f)
rows = list(reader)
if not rows:
return
header = rows[0]
cols = [_sanitize_identifier(c or f"col_{i}") for i, c in enumerate(header)]
col_defs = ", ".join(f'"{c}" TEXT' for c in cols)
conn.execute(f'CREATE TABLE IF NOT EXISTS "{table}" ({col_defs});')
placeholders = ", ".join(["?"] * len(cols))
for row in rows[1:]:
row = list(row) + [""] * (len(cols) - len(row))
row = row[:len(cols)]
conn.execute(
f'INSERT INTO "{table}" ({", ".join(cols)}) VALUES ({placeholders})',
row,
)
conn.commit()
finally:
conn.close()
def import_zip_of_csvs_to_sqlite(db_path: str, zip_bytes: bytes) -> None:
"""
Para un ZIP con múltiples CSV: cada CSV se vuelve una tabla.
(Se mantiene por compatibilidad, aunque ahora manejamos ZIPs
más generales en /upload.)
"""
conn = sqlite3.connect(db_path)
conn.close()
with zipfile.ZipFile(io.BytesIO(zip_bytes)) as zf:
for name in zf.namelist():
if not name.lower().endswith(".csv"):
continue
with zf.open(name) as f:
csv_bytes = f.read()
base_name = os.path.basename(name)
table_name = os.path.splitext(base_name)[0]
import_csv_to_sqlite(db_path, csv_bytes, table_name)
# ======================================================
# 4) Introspección de esquema y ejecución (sobre SQLite)
# ======================================================
def introspect_sqlite_schema(db_path: str) -> Dict[str, Any]:
if not os.path.exists(db_path):
raise FileNotFoundError(f"SQLite no encontrado: {db_path}")
conn = sqlite3.connect(db_path)
cur = conn.cursor()
cur.execute("SELECT name FROM sqlite_master WHERE type='table';")
tables = [row[0] for row in cur.fetchall()]
tables_info = {}
foreign_keys = []
parts = []
for t in tables:
cur.execute(f"PRAGMA table_info('{t}');")
rows = cur.fetchall()
cols = [r[1] for r in rows]
tables_info[t] = {"columns": cols}
cur.execute(f"PRAGMA foreign_key_list('{t}');")
fks = cur.fetchall()
for (id, seq, table, from_col, to_col, on_update, on_delete, match) in fks:
foreign_keys.append({
"from_table": t,
"from_column": from_col,
"to_table": table,
"to_column": to_col
})
parts.append(f"{t}(" + ", ".join(cols) + ")")
conn.close()
schema_str = " ; ".join(parts) if parts else "(empty_schema)"
return {
"tables": tables_info,
"foreign_keys": foreign_keys,
"schema_str": schema_str
}
def execute_sqlite(db_path: str, sql: str) -> Dict[str, Any]:
forbidden = ["drop ", "delete ", "update ", "insert ", "alter ", "replace "]
sql_low = sql.lower()
if any(f in sql_low for f in forbidden):
return {
"ok": False,
"error": "Query bloqueada por seguridad (operación destructiva).",
"rows": None,
"columns": []
}
try:
conn = sqlite3.connect(db_path)
cur = conn.cursor()
cur.execute(sql)
rows = cur.fetchall()
col_names = [desc[0] for desc in cur.description] if cur.description else []
conn.close()
return {"ok": True, "error": None, "rows": rows, "columns": col_names}
except Exception as e:
return {"ok": False, "error": str(e), "rows": None, "columns": []}
# ======================================================
# 4.1) SQL REPAIR LAYER (avanzado)
# ======================================================
def _normalize_name_for_match(name: str) -> str:
s = name.lower()
s = s.replace('"', '').replace("`", "")
s = s.replace("_", "")
if s.endswith("s") and len(s) > 3:
s = s[:-1]
return s
def _build_schema_indexes(tables_info: Dict[str, Dict[str, List[str]]]) -> Dict[str, Dict[str, List[str]]]:
table_index: Dict[str, List[str]] = {}
column_index: Dict[str, List[str]] = {}
for t, info in tables_info.items():
tn = _normalize_name_for_match(t)
table_index.setdefault(tn, [])
if t not in table_index[tn]:
table_index[tn].append(t)
for c in info.get("columns", []):
cn = _normalize_name_for_match(c)
column_index.setdefault(cn, [])
if c not in column_index[cn]:
column_index[cn].append(c)
return {"table_index": table_index, "column_index": column_index}
def _best_match_name(missing: str, index: Dict[str, List[str]]) -> Optional[str]:
if not index:
return None
key = _normalize_name_for_match(missing)
if key in index and index[key]:
return index[key][0]
candidates = difflib.get_close_matches(key, list(index.keys()), n=1, cutoff=0.7)
if not candidates:
return None
best_key = candidates[0]
if index[best_key]:
return index[best_key][0]
return None
DOMAIN_SYNONYMS_TABLE = {
"song": "track",
"songs": "track",
"tracks": "track",
"artist": "artist",
"artists": "artist",
"album": "album",
"albums": "album",
"order": "invoice",
"orders": "invoice",
}
DOMAIN_SYNONYMS_COLUMN = {
"song": "name",
"songs": "name",
"track": "name",
"title": "name",
"length": "milliseconds",
"duration": "milliseconds",
}
def try_repair_sql(sql: str, error: str, schema_meta: Dict[str, Any]) -> Optional[str]:
tables_info = schema_meta["tables"]
idx = _build_schema_indexes(tables_info)
table_index = idx["table_index"]
column_index = idx["column_index"]
repaired_sql = sql
changed = False
missing_table = None
missing_column = None
m_t = re.search(r"no such table: ([\w\.]+)", error)
if m_t:
missing_table = m_t.group(1)
m_c = re.search(r"no such column: ([\w\.]+)", error)
if m_c:
missing_column = m_c.group(1)
if missing_table:
short = missing_table.split(".")[-1]
syn = DOMAIN_SYNONYMS_TABLE.get(short.lower())
target = None
if syn:
target = _best_match_name(syn, table_index) or syn
if not target:
target = _best_match_name(short, table_index)
if target:
pattern = r"\b" + re.escape(short) + r"\b"
new_sql = re.sub(pattern, target, repaired_sql)
if new_sql != repaired_sql:
repaired_sql = new_sql
changed = True
if missing_column:
short = missing_column.split(".")[-1]
syn = DOMAIN_SYNONYMS_COLUMN.get(short.lower())
target = None
if syn:
target = _best_match_name(syn, column_index) or syn
if not target:
target = _best_match_name(short, column_index)
if target:
pattern = r"\b" + re.escape(short) + r"\b"
new_sql = re.sub(pattern, target, repaired_sql)
if new_sql != repaired_sql:
repaired_sql = new_sql
changed = True
if not changed:
return None
return repaired_sql
# ======================================================
# 5) Construcción de prompt y NL→SQL + re-ranking
# ======================================================
def build_prompt(question_en: str, db_id: str, schema_str: str) -> str:
return (
f"translate to SQL: {question_en} | "
f"db: {db_id} | schema: {schema_str} | "
f"note: use JOIN when foreign keys link tables"
)
def nl2sql_with_rerank(question: str, conn_id: str) -> Dict[str, Any]:
if conn_id not in DB_REGISTRY:
raise HTTPException(status_code=404, detail=f"connection_id '{conn_id}' no registrado")
db_path = DB_REGISTRY[conn_id]["db_path"]
meta = introspect_sqlite_schema(db_path)
schema_str = meta["schema_str"]
detected = detect_language(question)
question_en = translate_es_to_en(question) if detected == "es" else question
prompt = build_prompt(question_en, db_id=conn_id, schema_str=schema_str)
if t5_model is None:
load_nl2sql_model()
inputs = t5_tokenizer([prompt], return_tensors="pt", truncation=True, max_length=768).to(DEVICE)
num_beams = 6
num_return = 6
with torch.no_grad():
out = t5_model.generate(
**inputs,
max_length=220,
num_beams=num_beams,
num_return_sequences=num_return,
return_dict_in_generate=True,
output_scores=True,
)
sequences = out.sequences
scores = out.sequences_scores
if scores is not None:
scores = scores.cpu().tolist()
else:
scores = [0.0] * sequences.size(0)
candidates: List[Dict[str, Any]] = []
best = None
best_exec = False
best_score = -1e9
for i in range(sequences.size(0)):
raw_sql = t5_tokenizer.decode(sequences[i], skip_special_tokens=True).strip()
cand: Dict[str, Any] = {
"sql": raw_sql,
"score": float(scores[i]),
"repaired_from": None,
"repair_note": None,
"raw_sql_model": raw_sql,
}
exec_info = execute_sqlite(db_path, raw_sql)
if (not exec_info["ok"]) and (
"no such table" in (exec_info["error"] or "")
or "no such column" in (exec_info["error"] or "")
):
current_sql = raw_sql
last_error = exec_info["error"]
for step in range(1, 4):
repaired_sql = try_repair_sql(current_sql, last_error, meta)
if not repaired_sql or repaired_sql == current_sql:
break
exec_info2 = execute_sqlite(db_path, repaired_sql)
cand["repaired_from"] = current_sql if cand["repaired_from"] is None else cand["repaired_from"]
cand["repair_note"] = f"auto-repair (table/column name, step {step})"
cand["sql"] = repaired_sql
exec_info = exec_info2
current_sql = repaired_sql
if exec_info2["ok"]:
break
last_error = exec_info2["error"]
cand["exec_ok"] = exec_info["ok"]
cand["exec_error"] = exec_info["error"]
cand["rows_preview"] = (
[list(r) for r in exec_info["rows"][:5]] if exec_info["ok"] and exec_info["rows"] else None
)
cand["columns"] = exec_info["columns"]
candidates.append(cand)
if exec_info["ok"]:
if (not best_exec) or cand["score"] > best_score:
best_exec = True
best_score = cand["score"]
best = cand
elif not best_exec and cand["score"] > best_score:
best_score = cand["score"]
best = cand
if best is None and candidates:
best = candidates[0]
return {
"question_original": question,
"detected_language": detected,
"question_en": question_en,
"connection_id": conn_id,
"schema_summary": schema_str,
"best_sql": best["sql"],
"best_exec_ok": best.get("exec_ok", False),
"best_exec_error": best.get("exec_error"),
"best_rows_preview": best.get("rows_preview"),
"best_columns": best.get("columns", []),
"candidates": candidates,
}
# ======================================================
# 6) Schemas Pydantic
# ======================================================
class UploadResponse(BaseModel):
connection_id: str
label: str
db_path: str
note: Optional[str] = None
class ConnectionInfo(BaseModel):
connection_id: str
label: str
class SchemaResponse(BaseModel):
connection_id: str
schema_summary: str
tables: Dict[str, Dict[str, List[str]]]
class PreviewResponse(BaseModel):
connection_id: str
table: str
columns: List[str]
rows: List[List[Any]]
class InferRequest(BaseModel):
connection_id: str
question: str
class InferResponse(BaseModel):
question_original: str
detected_language: str
question_en: str
connection_id: str
schema_summary: str
best_sql: str
best_exec_ok: bool
best_exec_error: Optional[str]
best_rows_preview: Optional[List[List[Any]]]
best_columns: List[str]
candidates: List[Dict[str, Any]]
class SpeechInferResponse(BaseModel):
transcript: str
result: InferResponse
# ======================================================
# 7) Endpoints FastAPI
# ======================================================
@app.on_event("startup")
async def startup_event():
load_nl2sql_model()
print(f"✅ Backend NL2SQL inicializado. MODEL_DIR={MODEL_DIR}, UPLOAD_DIR={UPLOAD_DIR}")
@app.post("/upload", response_model=UploadResponse)
async def upload_database(db_file: UploadFile = File(...)):
"""
Subida universal de BD.
El usuario puede subir:
- .sqlite / .db → se usa tal cual
- .sql → dump MySQL/PostgreSQL/SQLite → se importa a SQLite
- .csv → se crea una BD SQLite y una tabla
- .zip → puede contener .sqlite/.db, .sql o .csv (se detecta automáticamente)
"""
filename = db_file.filename
if not filename:
raise HTTPException(status_code=400, detail="Archivo sin nombre.")
fname_lower = filename.lower()
contents = await db_file.read()
note: Optional[str] = None
conn_id: Optional[str] = None
# Caso 1: SQLite nativa
if fname_lower.endswith(".sqlite") or fname_lower.endswith(".db"):
conn_id = f"db_{uuid.uuid4().hex[:8]}"
dst_path = os.path.join(UPLOAD_DIR, f"{conn_id}.sqlite")
with open(dst_path, "wb") as f:
f.write(contents)
DB_REGISTRY[conn_id] = {"db_path": dst_path, "label": filename}
note = "SQLite file stored as-is."
# Caso 2: dump .sql
elif fname_lower.endswith(".sql"):
conn_id = create_empty_sqlite_db(label=filename)
db_path = DB_REGISTRY[conn_id]["db_path"]
sql_text = contents.decode("utf-8", errors="ignore")
import_sql_dump_to_sqlite(db_path, sql_text)
note = "SQL dump imported into SQLite (best effort)."
# Caso 3: CSV simple
elif fname_lower.endswith(".csv"):
conn_id = create_empty_sqlite_db(label=filename)
db_path = DB_REGISTRY[conn_id]["db_path"]
table_name = os.path.splitext(os.path.basename(filename))[0]
import_csv_to_sqlite(db_path, contents, table_name)
note = "CSV imported into a single SQLite table."
# Caso 4: ZIP universal
elif fname_lower.endswith(".zip"):
try:
with zipfile.ZipFile(io.BytesIO(contents)) as zf:
names = [info.filename for info in zf.infolist() if not info.is_dir()]
sqlite_names = [n for n in names if n.lower().endswith((".sqlite", ".db"))]
sql_names = [n for n in names if n.lower().endswith(".sql")]
csv_names = [n for n in names if n.lower().endswith(".csv")]
# 4.1: si el ZIP trae una BD SQLite nativa
if sqlite_names:
inner = sqlite_names[0]
conn_id = f"db_{uuid.uuid4().hex[:8]}"
dst_path = os.path.join(UPLOAD_DIR, f"{conn_id}.sqlite")
with zf.open(inner) as src, open(dst_path, "wb") as dst:
shutil.copyfileobj(src, dst)
DB_REGISTRY[conn_id] = {
"db_path": dst_path,
"label": f"{filename}::{os.path.basename(inner)}",
}
note = "SQLite database extracted from ZIP."
# 4.2: dumps SQL (uno o varios)
elif sql_names:
conn_id = create_empty_sqlite_db(label=filename)
db_path = DB_REGISTRY[conn_id]["db_path"]
if len(sql_names) == 1:
with zf.open(sql_names[0]) as f:
sql_text = f.read().decode("utf-8", errors="ignore")
else:
parts = []
for n in sorted(sql_names):
with zf.open(n) as f:
parts.append(f"-- FILE: {n}\n")
parts.append(f.read().decode("utf-8", errors="ignore"))
sql_text = "\n\n".join(parts)
import_sql_dump_to_sqlite(db_path, sql_text)
note = "SQL dump(s) from ZIP imported into SQLite."
# 4.3: solo CSVs
elif csv_names:
conn_id = create_empty_sqlite_db(label=filename)
db_path = DB_REGISTRY[conn_id]["db_path"]
for name in csv_names:
with zf.open(name) as f:
csv_bytes = f.read()
table_name = os.path.splitext(os.path.basename(name))[0]
import_csv_to_sqlite(db_path, csv_bytes, table_name)
note = "CSV files from ZIP imported into SQLite (one table per CSV)."
else:
raise HTTPException(
status_code=400,
detail="El ZIP no contiene archivos .sqlite/.db/.sql/.csv utilizables.",
)
except zipfile.BadZipFile:
raise HTTPException(status_code=400, detail="Archivo ZIP inválido o corrupto.")
else:
raise HTTPException(
status_code=400,
detail="Formato no soportado. Usa: .sqlite, .db, .sql, .csv o .zip",
)
return UploadResponse(
connection_id=conn_id,
label=DB_REGISTRY[conn_id]["label"],
db_path=DB_REGISTRY[conn_id]["db_path"],
note=note,
)
@app.get("/connections", response_model=List[ConnectionInfo])
async def list_connections():
out = []
for cid, info in DB_REGISTRY.items():
out.append(ConnectionInfo(connection_id=cid, label=info["label"]))
return out
@app.get("/schema/{connection_id}", response_model=SchemaResponse)
async def get_schema(connection_id: str):
if connection_id not in DB_REGISTRY:
raise HTTPException(status_code=404, detail="connection_id no encontrado")
db_path = DB_REGISTRY[connection_id]["db_path"]
meta = introspect_sqlite_schema(db_path)
return SchemaResponse(
connection_id=connection_id,
schema_summary=meta["schema_str"],
tables=meta["tables"],
)
@app.get("/preview/{connection_id}/{table}", response_model=PreviewResponse)
async def preview_table(connection_id: str, table: str, limit: int = 20):
if connection_id not in DB_REGISTRY:
raise HTTPException(status_code=404, detail="connection_id no encontrado")
db_path = DB_REGISTRY[connection_id]["db_path"]
try:
conn = sqlite3.connect(db_path)
cur = conn.cursor()
cur.execute(f'SELECT * FROM "{table}" LIMIT {int(limit)};')
rows = cur.fetchall()
cols = [d[0] for d in cur.description] if cur.description else []
conn.close()
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error al leer tabla '{table}': {e}")
return PreviewResponse(
connection_id=connection_id,
table=table,
columns=cols,
rows=[list(r) for r in rows],
)
@app.post("/infer", response_model=InferResponse)
async def infer_sql(req: InferRequest):
result = nl2sql_with_rerank(req.question, req.connection_id)
return InferResponse(**result)
@app.post("/speech-infer", response_model=SpeechInferResponse)
async def speech_infer(
connection_id: str = Form(...),
audio: UploadFile = File(...)
):
if openai_client is None:
raise HTTPException(
status_code=500,
detail="OPENAI_API_KEY no está configurado en el backend."
)
if audio.content_type is None:
raise HTTPException(status_code=400, detail="Archivo de audio inválido.")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".webm") as tmp:
tmp.write(await audio.read())
tmp_path = tmp.name
except Exception:
raise HTTPException(status_code=500, detail="No se pudo procesar el audio recibido.")
try:
with open(tmp_path, "rb") as f:
transcription = openai_client.audio.transcriptions.create(
model="gpt-4o-transcribe",
file=f,
)
transcript_text: str = transcription.text
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al transcribir audio: {e}")
result_dict = nl2sql_with_rerank(transcript_text, connection_id)
infer_result = InferResponse(**result_dict)
return SpeechInferResponse(
transcript=transcript_text,
result=infer_result,
)
@app.get("/health")
async def health():
return {
"status": "ok",
"model_loaded": t5_model is not None,
"connections": len(DB_REGISTRY),
"device": str(DEVICE),
}
@app.get("/")
async def root():
return {
"message": "NL2SQL T5-large universal backend is running (single-file SQLite engine).",
"endpoints": [
"POST /upload (subir .sqlite / .db / .sql / .csv / .zip)",
"GET /connections (listar BDs subidas)",
"GET /schema/{id} (esquema resumido)",
"GET /preview/{id}/{t} (preview de tabla)",
"POST /infer (NL→SQL + ejecución)",
"POST /speech-infer (NL por voz → SQL + ejecución)",
"GET /health (estado del backend)",
"GET /docs (OpenAPI UI)",
],
}