Spaces:
Sleeping
Sleeping
File size: 26,453 Bytes
44b9c55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Gradio TTS Interface Script
This script provides a web-based interface for four different TTS and audio processing modes:
1. Mode 1: Text + Features to Audio (unified_tts mode 2) with predefined examples
2. Mode 2: Text to Features + Audio (unified_tts mode 1)
3. Mode 3: Audio to Text Features (audio_feature_extractor)
4. Mode 4: Text + Instruction to Features (openrouter_gemini_client)
Usage:
python gradio_tts_interface.py
Then open the provided URL in your browser to access the interface.
"""
import gradio as gr
import json
import os
import tempfile
import traceback
from typing import Optional, Tuple, List, Dict, Any
import sys
# Add CosyVoice paths
sys.path.append('third-party/CosyVoice')
sys.path.append('third-party/Matcha-TTS')
# Import the three main modules
try:
from unified_tts import UnifiedTTS
except ImportError as e:
print(f"Warning: Could not import unified_tts: {e}")
UnifiedTTS = None
try:
from audio_feature_extractor import AudioFeatureExtractor
except ImportError as e:
print(f"Warning: Could not import audio_feature_extractor: {e}")
AudioFeatureExtractor = None
try:
from openrouter_gemini_client import OpenRouterGeminiClient
except ImportError as e:
print(f"Warning: Could not import openrouter_gemini_client: {e}")
OpenRouterGeminiClient = None
# Global instances (initialized lazily)
tts_instance = None
extractor_instance = None
# ===== Test Examples for Mode 1 (from unified_tts.py) =====
# These examples are taken from the unified_tts.py test cases and will be used
# as predefined examples in Mode 1 interface
TEST_EXAMPLES = [
{
"text": "Wow, you really did a great job.",
"features": '[{"word": "Wow, you really","pitch_mean": 360,"pitch_slope": 95,"energy_rms": 0.016,"energy_slope": 60,"spectral_centroid": 2650},{"word": "did a great job.","pitch_mean": 330,"pitch_slope": -80,"energy_rms": 0.014,"energy_slope": -50,"spectral_centroid": 2400}]'
},
{
"text": "Wow, you really did a great job.",
"features": '[{"word": "wow", "pitch_mean": 271, "pitch_slope": 6, "energy_rms": 0.009, "energy_slope": -4, "spectral_centroid": 2144}, {"word": "you realy", "pitch_mean": 270, "pitch_slope": 195, "energy_rms": 0.01, "energy_slope": 8, "spectral_centroid": 1403}, {"word": "did a great", "pitch_mean": 287, "pitch_slope": 152, "energy_rms": 0.009, "energy_slope": -15, "spectral_centroid": 1920}, {"word": "job", "pitch_mean": 166, "pitch_slope": -20, "energy_rms": 0.004, "energy_slope": -66, "spectral_centroid": 1881}]'
}]
# ===== Utility Functions =====
def get_tts_instance() -> Optional[UnifiedTTS]:
"""
Get or create a global TTS instance for reuse across requests.
This function implements lazy loading to avoid initializing heavy models
until they are actually needed. The instance is cached globally to prevent
repeated model loading.
Returns:
UnifiedTTS instance or None if initialization fails
"""
global tts_instance
if tts_instance is None and UnifiedTTS is not None:
try:
tts_instance = UnifiedTTS()
print("β
TTS instance initialized successfully")
except Exception as e:
print(f"β Failed to initialize TTS instance: {e}")
return None
return tts_instance
def get_extractor_instance() -> Optional[AudioFeatureExtractor]:
"""
Get or create a global AudioFeatureExtractor instance for reuse.
Similar to get_tts_instance(), this implements lazy loading and caching
for the audio feature extraction models.
Returns:
AudioFeatureExtractor instance or None if initialization fails
"""
global extractor_instance
if extractor_instance is None and AudioFeatureExtractor is not None:
try:
extractor_instance = AudioFeatureExtractor()
print("β
Audio extractor instance initialized successfully")
except Exception as e:
print(f"β Failed to initialize audio extractor instance: {e}")
return None
return extractor_instance
def load_example(example_idx: int) -> Tuple[str, str]:
"""
Load a predefined example for Mode 1.
This function retrieves one of the predefined test examples and returns
the text and features for use in the Gradio interface.
Args:
example_idx: Index of the example to load (0-4)
Returns:
Tuple of (text, features_json)
"""
if 0 <= example_idx < len(TEST_EXAMPLES):
example = TEST_EXAMPLES[example_idx]
return example["text"], example["features"]
else:
return "", ""
# ===== Mode 1: Text + Features to Audio (unified_tts mode 2) =====
def mode1_text_features_to_audio(text: str, features: str) -> Tuple[Optional[str], str]:
"""
Mode 1: Convert text and features to audio using unified_tts mode 2.
This function takes text input along with prosodic features and generates
speech audio. It uses the UnifiedTTS class in mode 2, which accepts
pre-defined word-level features to control the prosody of the output.
Args:
text: Input text to synthesize
features: JSON string containing word-level prosodic features
Returns:
Tuple of (audio_file_path, status_message)
Implementation Logic:
1. Validate inputs and get TTS instance
2. Create temporary output file
3. Call unified_tts.text_features_to_speech() method
4. Return audio file path and status message
"""
try:
# Input validation
if not text.strip():
return None, "β Error: Text input is required"
if not features.strip():
return None, "β Error: Features input is required"
# Get TTS instance
tts = get_tts_instance()
if tts is None:
return None, "β Error: Failed to initialize TTS model"
# Create temporary output file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
output_path = tmp_file.name
# Generate audio using mode 2
success = tts.text_features_to_speech(
text=text,
word_features=features,
output_path=output_path
)
if success and os.path.exists(output_path):
return output_path, f"β
Audio generated successfully! Text: '{text[:50]}...'"
else:
return None, "β Error: Audio generation failed"
except Exception as e:
error_msg = f"β Error in Mode 1: {str(e)}"
print(f"{error_msg}\n{traceback.format_exc()}")
return None, error_msg
# ===== Mode 2: Text to Features + Audio (unified_tts mode 1) =====
def mode2_text_to_features_audio(text: str) -> Tuple[Optional[str], str, str]:
"""
Mode 2: Convert text to features and audio using unified_tts mode 1.
This function takes only text input and generates both prosodic features
and speech audio. It uses the UnifiedTTS class in mode 1, which internally
generates word-level features and then converts them to speech.
Args:
text: Input text to synthesize
Returns:
Tuple of (audio_file_path, generated_features_json, status_message)
Implementation Logic:
1. Validate inputs and get TTS instance
2. Create temporary output file
3. Call unified_tts.text_to_speech_with_features() method
4. Extract generated features from the process
5. Return audio file, features, and status message
"""
try:
# Input validation
if not text.strip():
return None, "", "β Error: Text input is required"
# Get TTS instance
tts = get_tts_instance()
if tts is None:
return None, "", "β Error: Failed to initialize TTS model"
# Create temporary output file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
output_path = tmp_file.name
# Generate audio and extract features using the new method
success, generated_features = tts.text_to_speech_with_features(
text=text,
output_path=output_path
)
if success and os.path.exists(output_path):
# Format the generated features for display
if generated_features:
try:
# Try to parse and pretty-print the JSON features
features_obj = json.loads(generated_features)
formatted_features = json.dumps(features_obj, indent=2, ensure_ascii=False)
except json.JSONDecodeError:
# If it's not valid JSON, display as-is
formatted_features = generated_features
else:
formatted_features = "No features generated"
return output_path, formatted_features, f"β
Audio and features generated successfully! Text: '{text[:50]}...'"
else:
# Even if audio generation failed, we might still have features
if generated_features:
try:
features_obj = json.loads(generated_features)
formatted_features = json.dumps(features_obj, indent=2, ensure_ascii=False)
except json.JSONDecodeError:
formatted_features = generated_features
return None, formatted_features, "β οΈ Features generated but audio generation failed"
else:
return None, "", "β Error: Both audio and feature generation failed"
except Exception as e:
error_msg = f"β Error in Mode 2: {str(e)}"
print(f"{error_msg}\n{traceback.format_exc()}")
return None, "", error_msg
# ===== Mode 3: Audio to Text Features (audio_feature_extractor) =====
def mode3_audio_to_features(audio_file) -> Tuple[str, str]:
"""
Mode 3: Extract text features from audio using audio_feature_extractor.
This function takes an uploaded audio file and extracts both the transcribed
text and word-level prosodic features. It uses the AudioFeatureExtractor
class to perform speech recognition and feature extraction.
Args:
audio_file: Uploaded audio file from Gradio interface
Returns:
Tuple of (extracted_features_json, status_message)
Implementation Logic:
1. Validate audio input and get extractor instance
2. Load audio file using the extractor
3. Transcribe audio to get text
4. Extract word-level timestamps and features
5. Format results as JSON and return with status
"""
try:
# Input validation
if audio_file is None:
return "", "β Error: Audio file is required"
# Get extractor instance
extractor = get_extractor_instance()
if extractor is None:
return "", "β Error: Failed to initialize audio feature extractor"
# Load audio file
audio_path = audio_file.name if hasattr(audio_file, 'name') else str(audio_file)
audio_array, sampling_rate = extractor.load_audio_file(audio_path)
# Transcribe audio
transcription = extractor.transcribe_audio(audio_array, sampling_rate)
if not transcription:
return "", "β Error: Failed to transcribe audio"
# Get word-level timestamps
aligned_segments = extractor.get_word_timestamps(audio_array, transcription)
# Extract features (this would need to be implemented in the original extractor)
# For now, we return the transcription and basic timing information
result = {
"transcription": transcription,
"segments": []
}
for segment in aligned_segments:
segment_data = {
"text": segment.text,
"start": segment.start,
"end": segment.end,
"words": []
}
for word in segment.words:
word_data = {
"word": word.word,
"start": word.start,
"end": word.end,
"score": word.score
}
segment_data["words"].append(word_data)
result["segments"].append(segment_data)
features_json = json.dumps(result, indent=2, ensure_ascii=False)
return features_json, f"β
Features extracted successfully! Transcription: '{transcription[:50]}...'"
except Exception as e:
error_msg = f"β Error in Mode 3: {str(e)}"
print(f"{error_msg}\n{traceback.format_exc()}")
return "", error_msg
# ===== Mode 4: Text + Instruction to Features (openrouter_gemini_client) =====
def mode4_text_instruction_to_features(api_key: str, text: str, instruction: str, prompt_choice: int) -> Tuple[str, str]:
"""
Mode 4: Generate features from text and instruction using OpenRouter Gemini.
This function takes text and an emotional/stylistic instruction and generates
prosodic features using the OpenRouter Gemini API. It supports two different
prompt templates with different characteristics.
Args:
api_key: OpenRouter API key for authentication
text: Input text to generate features for
instruction: Emotional or stylistic instruction
prompt_choice: Choice of prompt template (1 or 2)
Returns:
Tuple of (generated_features_json, status_message)
Implementation Logic:
1. Validate inputs and API key
2. Initialize OpenRouter Gemini client
3. Generate prosodic features using selected prompt template
4. Extract and validate JSON response
5. Return features and status message
"""
try:
# Input validation
if not api_key.strip():
return "", "β Error: OpenRouter API key is required"
if not text.strip():
return "", "β Error: Text input is required"
if not instruction.strip():
return "", "β Error: Instruction is required"
# Check if OpenRouter client is available
if OpenRouterGeminiClient is None:
return "", "β Error: OpenRouter Gemini client not available"
# Initialize client
client = OpenRouterGeminiClient(api_key=api_key)
# Generate features
result = client.generate_prosodic_features(
text=text,
instruction=instruction,
prompt_choice=prompt_choice
)
if result['success']:
features_json = result['prosodic_features']
# Validate JSON format
try:
json.loads(features_json)
return features_json, f"β
Features generated successfully! Text: '{text[:50]}...'"
except json.JSONDecodeError:
return features_json, "β οΈ Features generated but JSON format may be invalid"
else:
error_msg = result.get('error', 'Unknown error')
return "", f"β Error: {error_msg}"
except Exception as e:
error_msg = f"β Error in Mode 4: {str(e)}"
print(f"{error_msg}\n{traceback.format_exc()}")
return "", error_msg
# ===== Gradio Interface Creation =====
def create_gradio_interface():
"""
Create and configure the main Gradio interface with four tabs.
This function sets up the complete web interface with four different modes,
each in its own tab. It configures all the input/output components and
connects them to the appropriate processing functions.
Returns:
Configured Gradio interface ready to launch
Interface Structure:
- Tab 1: Mode 1 (Text + Features β Audio) with examples
- Tab 2: Mode 2 (Text β Features + Audio)
- Tab 3: Mode 3 (Audio β Text Features)
- Tab 4: Mode 4 (Text + Instruction β Features)
"""
with gr.Blocks(title="TTS Multi-Mode Interface", theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# ποΈ TTS Multi-Mode Interface
This interface provides four different modes for text-to-speech and audio processing:
- **Mode 1**: Text + Features β Audio (with predefined examples)
- **Mode 2**: Text β Features + Audio
- **Mode 3**: Audio β Text Features
- **Mode 4**: Text + Instruction β Features (using OpenRouter Gemini)
""")
# ===== Tab 1: Mode 1 - Text + Features to Audio =====
with gr.Tab("Mode 1: Text + Features β Audio"):
gr.Markdown("""
### Mode 1: Text + Features to Audio
Input text along with prosodic features to generate speech audio.
Use the example buttons below to load predefined test cases.
""")
with gr.Row():
with gr.Column(scale=2):
mode1_text = gr.Textbox(
label="Text to Synthesize",
placeholder="Enter the text you want to convert to speech...",
lines=3
)
mode1_features = gr.Textbox(
label="Prosodic Features (JSON)",
placeholder="Enter word-level features in JSON format...",
lines=8
)
with gr.Column(scale=1):
mode1_audio_output = gr.Audio(label="Generated Audio")
mode1_status = gr.Textbox(label="Status", interactive=False)
mode1_generate_btn = gr.Button("π΅ Generate Audio", variant="primary")
# Example buttons for Mode 1
gr.Markdown("### π Predefined Examples")
with gr.Row():
example_btns = []
for i, example in enumerate(TEST_EXAMPLES):
btn = gr.Button(f"Example {i+1}: {example['text'][:30]}...", size="sm")
example_btns.append(btn)
# Connect example buttons
for i, btn in enumerate(example_btns):
btn.click(
fn=lambda idx=i: load_example(idx),
outputs=[mode1_text, mode1_features]
)
# Connect generate button
mode1_generate_btn.click(
fn=mode1_text_features_to_audio,
inputs=[mode1_text, mode1_features],
outputs=[mode1_audio_output, mode1_status]
)
# ===== Tab 2: Mode 2 - Text to Features + Audio =====
with gr.Tab("Mode 2: Text β Features + Audio"):
gr.Markdown("""
### Mode 2: Text to Features + Audio
Input only text to generate both prosodic features and speech audio.
The model will automatically generate appropriate features internally.
""")
with gr.Row():
with gr.Column(scale=1):
mode2_text = gr.Textbox(
label="Text to Synthesize",
placeholder="Enter the text you want to convert to speech...",
lines=4
)
mode2_generate_btn = gr.Button("π΅ Generate Audio & Features", variant="primary")
with gr.Column(scale=1):
mode2_audio_output = gr.Audio(label="Generated Audio")
mode2_features_output = gr.Textbox(
label="Generated Features",
lines=8,
interactive=False
)
mode2_status = gr.Textbox(label="Status", interactive=False)
# Connect generate button
mode2_generate_btn.click(
fn=mode2_text_to_features_audio,
inputs=[mode2_text],
outputs=[mode2_audio_output, mode2_features_output, mode2_status]
)
# ===== Tab 3: Mode 3 - Audio to Text Features =====
with gr.Tab("Mode 3: Audio β Text Features"):
gr.Markdown("""
### Mode 3: Audio to Text Features
Upload an audio file to extract transcribed text and word-level features.
The system will perform speech recognition and feature extraction.
""")
with gr.Row():
with gr.Column(scale=1):
mode3_audio_input = gr.Audio(
label="Upload Audio File",
type="filepath"
)
mode3_extract_btn = gr.Button("π Extract Features", variant="primary")
with gr.Column(scale=1):
mode3_features_output = gr.Textbox(
label="Extracted Features (JSON)",
lines=12,
interactive=False
)
mode3_status = gr.Textbox(label="Status", interactive=False)
# Connect extract button
mode3_extract_btn.click(
fn=mode3_audio_to_features,
inputs=[mode3_audio_input],
outputs=[mode3_features_output, mode3_status]
)
# ===== Tab 4: Mode 4 - Text + Instruction to Features =====
with gr.Tab("Mode 4: Text + Instruction β Features"):
gr.Markdown("""
### Mode 4: Text + Instruction to Features
Generate prosodic features from text and emotional/stylistic instructions using OpenRouter Gemini API.
**β οΈ Note about Prompt Templates:**
- **Template 1**: Standard template for reliable feature generation
- **Template 2**: Experimental template that may be more expressive but could generate additional words not in the original text
""")
with gr.Row():
with gr.Column(scale=1):
mode4_api_key = gr.Textbox(
label="OpenRouter API Key",
type="password",
placeholder="Enter your OpenRouter API key..."
)
mode4_text = gr.Textbox(
label="Text to Synthesize",
placeholder="Enter the text you want to generate features for...",
lines=3
)
mode4_instruction = gr.Textbox(
label="Emotional/Stylistic Instruction",
placeholder="e.g., 'happy and excited', 'calm and peaceful', 'sad and melancholic'...",
lines=2
)
mode4_prompt_choice = gr.Radio(
choices=[("Template 1 (Standard)", 1), ("Template 2 (Experimental)", 2)],
value=1,
label="Prompt Template"
)
mode4_generate_btn = gr.Button("π€ Generate Features", variant="primary")
with gr.Column(scale=1):
mode4_features_output = gr.Textbox(
label="Generated Features (JSON)",
lines=12,
interactive=False
)
mode4_status = gr.Textbox(label="Status", interactive=False)
# Connect generate button
mode4_generate_btn.click(
fn=mode4_text_instruction_to_features,
inputs=[mode4_api_key, mode4_text, mode4_instruction, mode4_prompt_choice],
outputs=[mode4_features_output, mode4_status]
)
# ===== Footer Information =====
gr.Markdown("""
---
### π Usage Notes:
- **Mode 1**: Best for precise control over prosodic features
- **Mode 2**: Best for quick text-to-speech with automatic feature generation
- **Mode 3**: Best for analyzing existing audio files
- **Mode 4**: Best for generating features with specific emotional characteristics
### π§ Technical Requirements:
- CUDA-compatible GPU recommended for optimal performance
- Sufficient GPU memory for model loading
- Valid OpenRouter API key for Mode 4
""")
return interface
# ===== Main Application Entry Point =====
def main():
"""
Main function to launch the Gradio interface.
This function creates the interface and launches it with appropriate
configuration for both local development and deployment.
"""
print("π Initializing TTS Multi-Mode Interface...")
# Create interface
interface = create_gradio_interface()
# Launch interface
print("π Launching Gradio interface...")
interface.launch(
server_port=7860, # Default Gradio port
share=True, # Set to True for public sharing
)
if __name__ == "__main__":
main()
|