Spaces:
Runtime error
Runtime error
| import os | |
| import tensorflow as tf | |
| os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' | |
| import numpy as np | |
| import PIL.Image | |
| import gradio as gr | |
| import tensorflow_hub as hub | |
| import matplotlib.pyplot as plt | |
| from real_esrgan_app import * | |
| ''' | |
| inference(img,mode) | |
| ''' | |
| hub_module = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') | |
| def tensor_to_image(tensor): | |
| tensor = tensor*255 | |
| tensor = np.array(tensor, dtype=np.uint8) | |
| if np.ndim(tensor)>3: | |
| assert tensor.shape[0] == 1 | |
| tensor = tensor[0] | |
| return PIL.Image.fromarray(tensor) | |
| style_urls = { | |
| 'Kanagawa great wave': 'The_Great_Wave_off_Kanagawa.jpg', | |
| 'Kandinsky composition 7': 'Kandinsky_Composition_7.jpg', | |
| 'Hubble pillars of creation': 'Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg', | |
| 'Van gogh starry night': 'Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg', | |
| 'Turner nantes': 'JMW_Turner_-_Nantes_from_the_Ile_Feydeau.jpg', | |
| 'Munch scream': 'Edvard_Munch.jpg', | |
| 'Picasso demoiselles avignon': 'Les_Demoiselles.jpg', | |
| 'Picasso violin': 'picaso_violin.jpg', | |
| 'Picasso bottle of rum': 'picaso_rum.jpg', | |
| 'Fire': 'Large_bonfire.jpg', | |
| 'Derkovits woman head': 'Derkovits_Gyula_Woman_head_1922.jpg', | |
| 'Amadeo style life': 'Amadeo_Souza_Cardoso.jpg', | |
| 'Derkovtis talig': 'Derkovits_Gyula_Talig.jpg', | |
| 'Kadishman': 'kadishman.jpeg' | |
| } | |
| style_images = [k for k, v in style_urls.items()] | |
| def image_click(images, evt: gr.SelectData, | |
| ): | |
| img_selected = images[evt.index]["name"] | |
| #print(img_selected) | |
| return img_selected | |
| #radio_style = gr.Radio(style_images, label="Choose Style") | |
| def perform_neural_transfer(content_image_input, style_image_input, super_resolution_type, hub_module = hub_module): | |
| content_image = content_image_input.astype(np.float32)[np.newaxis, ...] / 255. | |
| content_image = tf.image.resize(content_image, (400, 600)) | |
| #style_image_input = style_urls[style_image_input] | |
| #style_image_input = plt.imread(style_image_input) | |
| style_image = style_image_input.astype(np.float32)[np.newaxis, ...] / 255. | |
| style_image = tf.image.resize(style_image, (256, 256)) | |
| outputs = hub_module(tf.constant(content_image), tf.constant(style_image)) | |
| stylized_image = outputs[0] | |
| stylized_image = tensor_to_image(stylized_image) | |
| content_image_input = tensor_to_image(content_image_input) | |
| stylized_image = stylized_image.resize(content_image_input.size) | |
| print("super_resolution_type :") | |
| print(super_resolution_type) | |
| #print(super_resolution_type.value) | |
| if super_resolution_type not in ["base", "anime"]: | |
| return stylized_image | |
| else: | |
| print("call else :") | |
| stylized_image = inference(stylized_image, super_resolution_type) | |
| return stylized_image | |
| with gr.Blocks() as demo: | |
| gr.HTML("<h1><center> 🐑 Art Generation with Neural Style Transfer Fixed by Real-ESRGAN </center></h1>") | |
| with gr.Row(): | |
| style_reference_input_gallery = gr.Gallery(list(style_urls.values()), | |
| #width = 512, | |
| height = 768 + 128, | |
| label = "Style Image gallery (click to use)") | |
| with gr.Column(): | |
| super_resolution_type = gr.Radio(["none" ,"base", "anime"], type="value", default="none", label="choose Real-ESRGAN model type used to super resolution the Image Transformed") | |
| style_reference_input_image = gr.Image( | |
| label = "Style Image (you can upload yourself or click from left gallery)", | |
| #width = 512, | |
| interactive = True, value = style_urls["Kanagawa great wave"] | |
| ) | |
| content_image_input = gr.Image(label="Content Image", interactive = True, | |
| #width = 512 | |
| ) | |
| trans_image_output = gr.Image(label="Image Transformed", interactive = True, | |
| #width = 512 | |
| ) | |
| trans_button = gr.Button(label = "transform Content image style from Style Image") | |
| style_reference_input_gallery.select( | |
| image_click, style_reference_input_gallery, style_reference_input_image | |
| ) | |
| trans_button.click(perform_neural_transfer, [content_image_input, style_reference_input_image, super_resolution_type], trans_image_output) | |
| gr.Examples( | |
| [ | |
| [style_urls["Kanagawa great wave"], style_urls["Kadishman"], "none"], | |
| [style_urls["Derkovits woman head"], style_urls["Kadishman"], "base"], | |
| [style_urls["Kadishman"], style_urls["Kadishman"], "anime"], | |
| ], | |
| inputs = [style_reference_input_image, content_image_input, super_resolution_type], | |
| label = "Transform Examples" | |
| ) | |
| demo.launch() |