update
Browse files- README.md +2 -2
- app.py +47 -38
- requirements.txt +2 -0
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title: Detic+
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Detic+LangChain
|
| 3 |
+
emoji: ๐ฆ๏ธ๐
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
app.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
from pyChatGPT import ChatGPT
|
|
|
|
|
|
|
| 3 |
|
| 4 |
os.system("pip install -U gradio")
|
| 5 |
|
|
@@ -61,8 +63,6 @@ cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = (
|
|
| 61 |
)
|
| 62 |
predictor = DefaultPredictor(cfg)
|
| 63 |
|
| 64 |
-
# Setup the model's vocabulary using build-in datasets
|
| 65 |
-
|
| 66 |
BUILDIN_CLASSIFIER = {
|
| 67 |
"lvis": "datasets/metadata/lvis_v1_clip_a+cname.npy",
|
| 68 |
"objects365": "datasets/metadata/o365_clip_a+cnamefix.npy",
|
|
@@ -80,19 +80,22 @@ BUILDIN_METADATA_PATH = {
|
|
| 80 |
session_token = os.environ.get("SessionToken")
|
| 81 |
|
| 82 |
|
| 83 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
try:
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
api.refresh_auth()
|
| 88 |
-
api.reset_conversation()
|
| 89 |
-
response = resp["message"]
|
| 90 |
except:
|
| 91 |
-
|
| 92 |
-
return response
|
| 93 |
|
|
|
|
| 94 |
|
| 95 |
-
|
|
|
|
| 96 |
metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary])
|
| 97 |
classifier = BUILDIN_CLASSIFIER[vocabulary]
|
| 98 |
num_classes = len(metadata.thing_classes)
|
|
@@ -128,45 +131,51 @@ def inference(img, vocabulary):
|
|
| 128 |
f"{predicted_label} - X:({int(x0)} Y: {int(y0)} Width {int(width)} Height: {int(height)})"
|
| 129 |
)
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
| 134 |
|
| 135 |
return (
|
| 136 |
Image.fromarray(np.uint8(out.get_image())).convert("RGB"),
|
| 137 |
-
|
| 138 |
)
|
| 139 |
|
| 140 |
|
| 141 |
-
# create a gradio block for image classification
|
| 142 |
with gr.Blocks() as demo:
|
| 143 |
-
gr.
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
gr.HTML(
|
| 149 |
-
"<p>You can duplicating this space and use your own session token: <a style='display:inline-block' href='https://huggingface.co/spaces/yizhangliu/chatGPT?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>"
|
| 150 |
-
)
|
| 151 |
-
gr.HTML(
|
| 152 |
-
"<p> Instruction on how to get session token can be seen in video <a style='display:inline-block' href='https://www.youtube.com/watch?v=TdNSj_qgdFk'><font style='color:blue;weight:bold;'>here</font></a>. Add your session token by going to settings and add under secrets. </p>"
|
| 153 |
-
)
|
| 154 |
|
| 155 |
with gr.Column():
|
| 156 |
with gr.Row():
|
| 157 |
inp = gr.Image(label="Input Image", type="filepath")
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
with gr.Row():
|
| 166 |
outviz = gr.Image(label="Visualization", type="pil")
|
| 167 |
-
output_desc = gr.Textbox(label="
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
btn_detic.click(fn=inference, inputs=[inp, vocab], outputs=[outviz, output_desc])
|
| 171 |
|
| 172 |
-
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
from pyChatGPT import ChatGPT
|
| 3 |
+
from langchain.llms import OpenAI
|
| 4 |
+
|
| 5 |
|
| 6 |
os.system("pip install -U gradio")
|
| 7 |
|
|
|
|
| 63 |
)
|
| 64 |
predictor = DefaultPredictor(cfg)
|
| 65 |
|
|
|
|
|
|
|
| 66 |
BUILDIN_CLASSIFIER = {
|
| 67 |
"lvis": "datasets/metadata/lvis_v1_clip_a+cname.npy",
|
| 68 |
"objects365": "datasets/metadata/o365_clip_a+cnamefix.npy",
|
|
|
|
| 80 |
session_token = os.environ.get("SessionToken")
|
| 81 |
|
| 82 |
|
| 83 |
+
def generate_caption(object_list_str, api_key, temperature):
|
| 84 |
+
query = f"You are an intelligent image captioner. I will hand you the objects and their position, and you should give me a detailed description for the photo. In this photo we have the following objects\n{object_list_str}"
|
| 85 |
+
llm = OpenAI(
|
| 86 |
+
model_name="text-davinci-003", openai_api_key=api_key, temperature=temperature
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
try:
|
| 90 |
+
caption = llm(query)
|
| 91 |
+
caption = caption.strip()
|
|
|
|
|
|
|
|
|
|
| 92 |
except:
|
| 93 |
+
caption = "Sorry, something went wrong!"
|
|
|
|
| 94 |
|
| 95 |
+
return caption
|
| 96 |
|
| 97 |
+
|
| 98 |
+
def inference(img, vocabulary, api_key, temperature):
|
| 99 |
metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary])
|
| 100 |
classifier = BUILDIN_CLASSIFIER[vocabulary]
|
| 101 |
num_classes = len(metadata.thing_classes)
|
|
|
|
| 131 |
f"{predicted_label} - X:({int(x0)} Y: {int(y0)} Width {int(width)} Height: {int(height)})"
|
| 132 |
)
|
| 133 |
|
| 134 |
+
if api_key is not None:
|
| 135 |
+
gpt_response = generate_caption(object_list_str, api_key, temperature)
|
| 136 |
+
else:
|
| 137 |
+
gpt_response = "Please paste your OpenAI key to use"
|
| 138 |
|
| 139 |
return (
|
| 140 |
Image.fromarray(np.uint8(out.get_image())).convert("RGB"),
|
| 141 |
+
gpt_response,
|
| 142 |
)
|
| 143 |
|
| 144 |
|
|
|
|
| 145 |
with gr.Blocks() as demo:
|
| 146 |
+
with gr.Column():
|
| 147 |
+
gr.Markdown("# Image Captioning using LangChain (GPT3.5) ๐ฆ๏ธ๐")
|
| 148 |
+
gr.Markdown(
|
| 149 |
+
"Use Detic to detect objects in an image and then use GPT to describe the image."
|
| 150 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
with gr.Column():
|
| 153 |
with gr.Row():
|
| 154 |
inp = gr.Image(label="Input Image", type="filepath")
|
| 155 |
+
with gr.Column():
|
| 156 |
+
openai_api_key_textbox = gr.Textbox(
|
| 157 |
+
placeholder="Paste your OpenAI API key (sk-...)",
|
| 158 |
+
show_label=False,
|
| 159 |
+
lines=1,
|
| 160 |
+
type="password",
|
| 161 |
+
)
|
| 162 |
+
temperature = gr.Slider(0, 1, 0.1, label="Temperature")
|
| 163 |
+
vocab = gr.Dropdown(
|
| 164 |
+
["lvis", "objects365", "openimages", "coco"],
|
| 165 |
+
label="Detic Vocabulary",
|
| 166 |
+
value="lvis",
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
btn_detic = gr.Button("Run Detic+GPT3.5")
|
| 170 |
with gr.Row():
|
| 171 |
outviz = gr.Image(label="Visualization", type="pil")
|
| 172 |
+
output_desc = gr.Textbox(label="Description Description", lines=5)
|
| 173 |
+
|
| 174 |
+
btn_detic.click(
|
| 175 |
+
fn=inference,
|
| 176 |
+
inputs=[inp, vocab, openai_api_key_textbox, temperature],
|
| 177 |
+
outputs=[outviz, output_desc],
|
| 178 |
+
)
|
| 179 |
|
|
|
|
| 180 |
|
| 181 |
+
demo.launch(debug=False)
|
requirements.txt
CHANGED
|
@@ -36,3 +36,5 @@ nltk
|
|
| 36 |
pyChatGPT
|
| 37 |
|
| 38 |
git+https://github.com/openai/CLIP.git
|
|
|
|
|
|
|
|
|
| 36 |
pyChatGPT
|
| 37 |
|
| 38 |
git+https://github.com/openai/CLIP.git
|
| 39 |
+
|
| 40 |
+
langchain
|