Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,17 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
-
from PIL import Image
|
| 4 |
-
import numpy as np
|
| 5 |
import traceback
|
| 6 |
-
import
|
| 7 |
-
import
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
# Your original model list
|
| 11 |
-
# -----------------------------
|
| 12 |
models = [
|
| 13 |
("Ateeqq/ai-vs-human-image-detector", "ateeq"),
|
| 14 |
("umm-maybe/AI-image-detector", "umm_maybe"),
|
| 15 |
("dima806/ai_vs_human_generated_image_detection", "dimma"),
|
| 16 |
]
|
| 17 |
|
| 18 |
-
# load pipelines (same as your working code)
|
| 19 |
pipes = []
|
| 20 |
for model_id, _ in models:
|
| 21 |
try:
|
|
@@ -24,99 +20,16 @@ for model_id, _ in models:
|
|
| 24 |
except Exception as e:
|
| 25 |
print(f"Error loading {model_id}: {e}")
|
| 26 |
|
| 27 |
-
# -----------------------------
|
| 28 |
-
# Helper: simple texture-based saliency map (no cv2, no model internals)
|
| 29 |
-
# - This approximates "where the image has high-frequency detail"
|
| 30 |
-
# - Not true Grad-CAM, but a lightweight explainability overlay that's safe to run in Spaces
|
| 31 |
-
# -----------------------------
|
| 32 |
-
def compute_texture_heatmap(pil_img, downsample=128):
|
| 33 |
-
"""
|
| 34 |
-
Returns a 2D float numpy array (0..1) heatmap highlighting textured/high-frequency regions.
|
| 35 |
-
Steps:
|
| 36 |
-
- convert to grayscale
|
| 37 |
-
- blur to remove low-frequency shading
|
| 38 |
-
- compute absolute difference between original and blurred to highlight texture
|
| 39 |
-
- normalize
|
| 40 |
-
"""
|
| 41 |
-
try:
|
| 42 |
-
# convert and resize for speed
|
| 43 |
-
w, h = pil_img.size
|
| 44 |
-
short = min(downsample, max(64, min(w, h)))
|
| 45 |
-
img_small = pil_img.convert("L").resize((short, short), resample=Image.BILINEAR)
|
| 46 |
-
# blurred version
|
| 47 |
-
blurred = img_small.filter(ImageFilter.GaussianBlur(radius=3))
|
| 48 |
-
# absolute difference
|
| 49 |
-
arr_orig = np.array(img_small).astype(np.float32) / 255.0
|
| 50 |
-
arr_blur = np.array(blurred).astype(np.float32) / 255.0
|
| 51 |
-
diff = np.abs(arr_orig - arr_blur)
|
| 52 |
-
# amplify small differences
|
| 53 |
-
diff = diff ** 0.8
|
| 54 |
-
# normalize to 0..1
|
| 55 |
-
diff = diff - diff.min()
|
| 56 |
-
diff = diff / (diff.max() + 1e-8)
|
| 57 |
-
return diff
|
| 58 |
-
except Exception as e:
|
| 59 |
-
print("compute_texture_heatmap error:", e)
|
| 60 |
-
return None
|
| 61 |
-
|
| 62 |
-
def apply_colormap_numpy(heatmap):
|
| 63 |
-
"""
|
| 64 |
-
Simple jet-like colormap without cv2.
|
| 65 |
-
heatmap: 2D float array 0..1
|
| 66 |
-
returns: HxWx3 uint8 RGB
|
| 67 |
-
"""
|
| 68 |
-
h = np.clip(heatmap, 0.0, 1.0)
|
| 69 |
-
c = np.zeros((h.shape[0], h.shape[1], 3), dtype=np.float32)
|
| 70 |
-
c[..., 0] = np.clip(1.5 - 4.0 * np.abs(h - 0.25), 0, 1) # R
|
| 71 |
-
c[..., 1] = np.clip(1.5 - 4.0 * np.abs(h - 0.5), 0, 1) # G
|
| 72 |
-
c[..., 2] = np.clip(1.5 - 4.0 * np.abs(h - 0.75), 0, 1) # B
|
| 73 |
-
return (c * 255).astype(np.uint8)
|
| 74 |
-
|
| 75 |
-
def overlay_heatmap_on_pil(orig_pil, heatmap, alpha=0.55):
|
| 76 |
-
"""
|
| 77 |
-
orig_pil: PIL RGB
|
| 78 |
-
heatmap: small 2D float array (0..1) -> will be resized to image
|
| 79 |
-
returns: PIL RGB overlay image
|
| 80 |
-
"""
|
| 81 |
-
try:
|
| 82 |
-
orig = np.array(orig_pil.convert("RGB")).astype(np.uint8)
|
| 83 |
-
# resize heatmap to image size using PIL
|
| 84 |
-
hm_img = Image.fromarray((np.clip(heatmap,0,1) * 255).astype(np.uint8))
|
| 85 |
-
hm_resized = np.array(hm_img.resize((orig.shape[1], orig.shape[0]), resample=Image.BILINEAR)) / 255.0
|
| 86 |
-
colored = apply_colormap_numpy(hm_resized)
|
| 87 |
-
overlay = np.clip(orig * (1 - alpha) + colored * alpha, 0, 255).astype(np.uint8)
|
| 88 |
-
return Image.fromarray(overlay)
|
| 89 |
-
except Exception as e:
|
| 90 |
-
print("overlay_heatmap_on_pil error:", e)
|
| 91 |
-
return orig_pil
|
| 92 |
-
|
| 93 |
-
# -----------------------------
|
| 94 |
-
# Your original predict function, extended to return overlay + reason
|
| 95 |
-
# -----------------------------
|
| 96 |
def predict_image(image: Image.Image):
|
| 97 |
try:
|
| 98 |
results = []
|
| 99 |
for _, pipe in pipes:
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
res = pipe(image)
|
| 103 |
-
if isinstance(res, list) and res:
|
| 104 |
-
res0 = res[0]
|
| 105 |
-
elif isinstance(res, dict):
|
| 106 |
-
res0 = res
|
| 107 |
-
else:
|
| 108 |
-
res0 = {"label":"error","score":0.0}
|
| 109 |
-
except Exception as e:
|
| 110 |
-
print("pipeline error:", e)
|
| 111 |
-
res0 = {"label":"error","score":0.0}
|
| 112 |
-
results.append(res0)
|
| 113 |
-
|
| 114 |
-
if not results:
|
| 115 |
-
return "<div style='color:red;'>No models loaded</div>", None, "no pipelines"
|
| 116 |
|
| 117 |
final_result = results[0]
|
| 118 |
-
label = final_result
|
| 119 |
-
score = final_result
|
| 120 |
|
| 121 |
if "ai" in label or "fake" in label:
|
| 122 |
verdict = f"🧠 AI-Generated ({score:.1f}% confidence)"
|
|
@@ -125,7 +38,6 @@ def predict_image(image: Image.Image):
|
|
| 125 |
verdict = f"🧍 Human-Made ({score:.1f}% confidence)"
|
| 126 |
color = "#4CAF50"
|
| 127 |
|
| 128 |
-
# create the same styled HTML box you had
|
| 129 |
html = f"""
|
| 130 |
<div class='result-box' style="
|
| 131 |
background: linear-gradient(135deg, {color}33, #1a1a1a);
|
|
@@ -142,32 +54,12 @@ def predict_image(image: Image.Image):
|
|
| 142 |
{verdict}
|
| 143 |
</div>
|
| 144 |
"""
|
| 145 |
-
|
| 146 |
-
# compute a lightweight texture heatmap (fast) and overlay
|
| 147 |
-
heatmap = compute_texture_heatmap(image, downsample=160)
|
| 148 |
-
overlay_img = None
|
| 149 |
-
explain_reason = ""
|
| 150 |
-
if heatmap is None:
|
| 151 |
-
explain_reason = "explainability failed"
|
| 152 |
-
else:
|
| 153 |
-
try:
|
| 154 |
-
overlay_img = overlay_heatmap_on_pil(image, heatmap, alpha=0.55)
|
| 155 |
-
explain_reason = "Texture-based saliency overlay (approximate explainability)"
|
| 156 |
-
except Exception as e:
|
| 157 |
-
print("overlay creation failed:", e)
|
| 158 |
-
overlay_img = None
|
| 159 |
-
explain_reason = "overlay failed"
|
| 160 |
-
|
| 161 |
-
# return: html string, overlay PIL image (or None), explain_reason text
|
| 162 |
-
return html, overlay_img, explain_reason
|
| 163 |
-
|
| 164 |
except Exception as e:
|
| 165 |
traceback.print_exc()
|
| 166 |
-
return f"<div style='color:red;'>Error analyzing image: {str(e)}</div>"
|
| 167 |
|
| 168 |
-
#
|
| 169 |
-
# CSS (same as yours)
|
| 170 |
-
# -----------------------------
|
| 171 |
css = """
|
| 172 |
body, .gradio-container {
|
| 173 |
font-family: 'Poppins', sans-serif !important;
|
|
@@ -211,9 +103,6 @@ h1 {
|
|
| 211 |
}
|
| 212 |
"""
|
| 213 |
|
| 214 |
-
# -----------------------------
|
| 215 |
-
# Gradio UI (keeps your layout)
|
| 216 |
-
# -----------------------------
|
| 217 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 218 |
gr.Markdown("<h1>🔍 AI Image Detector</h1>")
|
| 219 |
|
|
@@ -224,31 +113,19 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
| 224 |
clear_button = gr.Button("Clear", variant="secondary")
|
| 225 |
loader = gr.HTML("")
|
| 226 |
with gr.Column(scale=1):
|
| 227 |
-
# show original / overlay side-by-side like you had
|
| 228 |
-
orig_display = gr.Image(type="pil", label="Upload an image")
|
| 229 |
-
overlay_display = gr.Image(type="pil", label="Original / Overlay")
|
| 230 |
-
explain_box = gr.Markdown("Explainability:")
|
| 231 |
-
explain_text = gr.Textbox(label="", interactive=False)
|
| 232 |
-
|
| 233 |
output = gr.HTML(label="Result")
|
| 234 |
|
| 235 |
def analyze(img):
|
| 236 |
if img is None:
|
| 237 |
-
return ("",
|
| 238 |
loader_html = "<div id='pulse-loader'></div>"
|
| 239 |
-
yield (loader_html,
|
| 240 |
-
|
| 241 |
-
# run prediction + explain
|
| 242 |
-
html, overlay_img, explain_reason = predict_image(img)
|
| 243 |
|
| 244 |
-
#
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
else:
|
| 248 |
-
# no overlay: show original and message
|
| 249 |
-
yield ("", img, img, html + f"<div style='margin-top:8px; color:#ccc; font-size:12px;'>{explain_reason}</div>")
|
| 250 |
|
| 251 |
-
analyze_button.click(analyze, inputs=image_input, outputs=[loader,
|
| 252 |
-
clear_button.click(lambda: ("",
|
| 253 |
|
| 254 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
+
from PIL import Image
|
|
|
|
| 4 |
import traceback
|
| 5 |
+
import time
|
| 6 |
+
import threading
|
| 7 |
|
| 8 |
+
# Models
|
|
|
|
|
|
|
| 9 |
models = [
|
| 10 |
("Ateeqq/ai-vs-human-image-detector", "ateeq"),
|
| 11 |
("umm-maybe/AI-image-detector", "umm_maybe"),
|
| 12 |
("dima806/ai_vs_human_generated_image_detection", "dimma"),
|
| 13 |
]
|
| 14 |
|
|
|
|
| 15 |
pipes = []
|
| 16 |
for model_id, _ in models:
|
| 17 |
try:
|
|
|
|
| 20 |
except Exception as e:
|
| 21 |
print(f"Error loading {model_id}: {e}")
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def predict_image(image: Image.Image):
|
| 24 |
try:
|
| 25 |
results = []
|
| 26 |
for _, pipe in pipes:
|
| 27 |
+
res = pipe(image)[0]
|
| 28 |
+
results.append(res)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
final_result = results[0]
|
| 31 |
+
label = final_result["label"].lower()
|
| 32 |
+
score = final_result["score"] * 100
|
| 33 |
|
| 34 |
if "ai" in label or "fake" in label:
|
| 35 |
verdict = f"🧠 AI-Generated ({score:.1f}% confidence)"
|
|
|
|
| 38 |
verdict = f"🧍 Human-Made ({score:.1f}% confidence)"
|
| 39 |
color = "#4CAF50"
|
| 40 |
|
|
|
|
| 41 |
html = f"""
|
| 42 |
<div class='result-box' style="
|
| 43 |
background: linear-gradient(135deg, {color}33, #1a1a1a);
|
|
|
|
| 54 |
{verdict}
|
| 55 |
</div>
|
| 56 |
"""
|
| 57 |
+
return html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
traceback.print_exc()
|
| 60 |
+
return f"<div style='color:red;'>Error analyzing image: {str(e)}</div>"
|
| 61 |
|
| 62 |
+
# CSS for sleek glowing pulse
|
|
|
|
|
|
|
| 63 |
css = """
|
| 64 |
body, .gradio-container {
|
| 65 |
font-family: 'Poppins', sans-serif !important;
|
|
|
|
| 103 |
}
|
| 104 |
"""
|
| 105 |
|
|
|
|
|
|
|
|
|
|
| 106 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 107 |
gr.Markdown("<h1>🔍 AI Image Detector</h1>")
|
| 108 |
|
|
|
|
| 113 |
clear_button = gr.Button("Clear", variant="secondary")
|
| 114 |
loader = gr.HTML("")
|
| 115 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
output = gr.HTML(label="Result")
|
| 117 |
|
| 118 |
def analyze(img):
|
| 119 |
if img is None:
|
| 120 |
+
return ("", "<div style='color:red;'>Please upload an image first!</div>")
|
| 121 |
loader_html = "<div id='pulse-loader'></div>"
|
| 122 |
+
yield (loader_html, "") # instantly show loader
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
+
# do analysis in background
|
| 125 |
+
result = predict_image(img)
|
| 126 |
+
yield ("", result) # hide loader, show result
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
analyze_button.click(analyze, inputs=image_input, outputs=[loader, output])
|
| 129 |
+
clear_button.click(lambda: ("", ""), outputs=[loader, output])
|
| 130 |
|
| 131 |
demo.launch()
|