Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import supervision as sv
|
| 4 |
+
from ultralytics import YOLO
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torch
|
| 7 |
+
import time
|
| 8 |
+
import numpy as np
|
| 9 |
+
import uuid
|
| 10 |
+
model = YOLO("yolov8s.pt")
|
| 11 |
+
|
| 12 |
+
def stream_object_detection(video):
|
| 13 |
+
cap = cv2.VideoCapture(video)
|
| 14 |
+
# This means we will output mp4 videos
|
| 15 |
+
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore
|
| 16 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 17 |
+
desired_fps = fps // SUBSAMPLE
|
| 18 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
|
| 19 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
|
| 20 |
+
iterating, frame = cap.read()
|
| 21 |
+
n_frames = 0
|
| 22 |
+
output_video_name = f"output_{uuid.uuid4()}.mp4"
|
| 23 |
+
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore
|
| 24 |
+
|
| 25 |
+
while iterating:
|
| 26 |
+
frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5)
|
| 27 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 28 |
+
result = model(Image.fromarray(frame))[0]
|
| 29 |
+
detections = sv.Detections.from_ultralytics(result)
|
| 30 |
+
outp = draw_box(frame,detections)
|
| 31 |
+
frame = np.array(outp)
|
| 32 |
+
# Convert RGB to BGR
|
| 33 |
+
frame = frame[:, :, ::-1].copy()
|
| 34 |
+
output_video.write(frame)
|
| 35 |
+
batch = []
|
| 36 |
+
output_video.release()
|
| 37 |
+
yield output_video_name
|
| 38 |
+
output_video_name = f"output_{uuid.uuid4()}.mp4"
|
| 39 |
+
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore
|
| 40 |
+
iterating, frame = cap.read()
|
| 41 |
+
n_frames += 1
|
| 42 |
+
|
| 43 |
+
with gr.Blocks() as app:
|
| 44 |
+
#inp = gr.Image(type="filepath")
|
| 45 |
+
with gr.Row():
|
| 46 |
+
with gr.Column():
|
| 47 |
+
inp = gr.Video()
|
| 48 |
+
btn = gr.Button()
|
| 49 |
+
outp_v = gr.Video(label="Processed Video", streaming=True, autoplay=True)
|
| 50 |
+
btn.click(stream_object_detection,inp,[outp_v])
|
| 51 |
+
app.queue(concurrency_limit=20).launch()
|