Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,97 +1,13 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
# from starlette.middleware import Middleware
|
| 9 |
-
# from starlette.middleware.cors import CORSMiddleware
|
| 10 |
-
|
| 11 |
-
# import logging
|
| 12 |
-
|
| 13 |
-
# logging.basicConfig(level=logging.INFO)
|
| 14 |
-
# logger = logging.getLogger(__name__)
|
| 15 |
-
|
| 16 |
-
# app = FastAPI(
|
| 17 |
-
# middleware=[
|
| 18 |
-
# Middleware(
|
| 19 |
-
# CORSMiddleware,
|
| 20 |
-
# allow_origins=["*"], # Cho phép tất cả các origin
|
| 21 |
-
# allow_credentials=True,
|
| 22 |
-
# allow_methods=["*"], # Cho phép tất cả các phương thức
|
| 23 |
-
# allow_headers=["*"], # Cho phép tất cả các header
|
| 24 |
-
# )
|
| 25 |
-
# ]
|
| 26 |
-
# )
|
| 27 |
-
# # Tạo thư mục temp nếu chưa có
|
| 28 |
-
# if not os.path.exists("temp"):
|
| 29 |
-
# os.makedirs("temp")
|
| 30 |
-
|
| 31 |
-
# # Load mô hình SenseVoiceSmall từ Hugging Face
|
| 32 |
-
# model_dir = "FunAudioLLM/SenseVoiceSmall"
|
| 33 |
-
# model = AutoModel(
|
| 34 |
-
# model=model_dir,
|
| 35 |
-
# vad_model="fsmn-vad",
|
| 36 |
-
# vad_kwargs={"max_single_segment_time": 30000},
|
| 37 |
-
# device="cuda:0",
|
| 38 |
-
# hub="hf",
|
| 39 |
-
# )
|
| 40 |
-
|
| 41 |
-
# # Hàm tính RMS energy
|
| 42 |
-
# def calculate_rms_energy(audio_path):
|
| 43 |
-
# y, sr = librosa.load(audio_path)
|
| 44 |
-
# rms = librosa.feature.rms(y=y)[0]
|
| 45 |
-
# return np.mean(rms)
|
| 46 |
-
|
| 47 |
-
# # Hàm phát hiện tiếng ồn
|
| 48 |
-
# def detect_noise(audio_path):
|
| 49 |
-
# rms_energy = calculate_rms_energy(audio_path)
|
| 50 |
-
# res = model.generate(input=audio_path, language="auto", audio_event_detection=True)
|
| 51 |
-
# audio_events = res[0].get("audio_event_detection", {})
|
| 52 |
-
|
| 53 |
-
# if rms_energy > 0.02:
|
| 54 |
-
# return "ồn ào"
|
| 55 |
-
# elif rms_energy > 0.01:
|
| 56 |
-
# for event_label, event_score in audio_events.items():
|
| 57 |
-
# if event_score > 0.7 and event_label in ["laughter", "applause", "crying", "coughing"]:
|
| 58 |
-
# return f"ồn ào ({event_label})"
|
| 59 |
-
# return "yên tĩnh"
|
| 60 |
-
|
| 61 |
-
# @app.get("/")
|
| 62 |
-
# def read_root():
|
| 63 |
-
# return {"message": "Hello, World!"}
|
| 64 |
-
|
| 65 |
-
# print(app.routes)
|
| 66 |
-
|
| 67 |
-
# # API nhận file âm thanh từ Flutter
|
| 68 |
-
# @app.post("/detect-noise/")
|
| 69 |
-
# async def detect_noise_api(file: UploadFile = File(...)):
|
| 70 |
-
# try:
|
| 71 |
-
# logger.info("Tên file: %s", file.filename)
|
| 72 |
-
# logger.info("Loại file: %s", file.content_type)
|
| 73 |
-
# file_size = len(await file.read())
|
| 74 |
-
# logger.info("Kích thước file: %s bytes", file_size)
|
| 75 |
-
# await file.seek(0) # Reset lại vị trí đọc file
|
| 76 |
-
|
| 77 |
-
# file_path = f"temp/{file.filename}"
|
| 78 |
-
# with open(file_path, "wb") as buffer:
|
| 79 |
-
# shutil.copyfileobj(file.file, buffer)
|
| 80 |
-
|
| 81 |
-
# result = detect_noise(file_path)
|
| 82 |
-
# return {"noise_level": result}
|
| 83 |
-
# except Exception as e:
|
| 84 |
-
# logger.exception("Lỗi trong API: %s", e)
|
| 85 |
-
# return {"error": str(e)}
|
| 86 |
-
|
| 87 |
-
# # Chạy FastAPI trên Hugging Face Spaces
|
| 88 |
-
# if __name__ == "__main__":
|
| 89 |
-
# uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
from fastapi import FastAPI, UploadFile, File
|
| 93 |
from starlette.middleware import Middleware
|
| 94 |
from starlette.middleware.cors import CORSMiddleware
|
|
|
|
| 95 |
import logging
|
| 96 |
|
| 97 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -101,17 +17,101 @@ app = FastAPI(
|
|
| 101 |
middleware=[
|
| 102 |
Middleware(
|
| 103 |
CORSMiddleware,
|
| 104 |
-
allow_origins=["*"],
|
| 105 |
allow_credentials=True,
|
| 106 |
-
allow_methods=["*"],
|
| 107 |
-
allow_headers=["*"],
|
| 108 |
)
|
| 109 |
]
|
| 110 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
@app.post("/detect-noise/")
|
| 113 |
async def detect_noise_api(file: UploadFile = File(...)):
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile
|
| 2 |
+
import librosa
|
| 3 |
+
import numpy as np
|
| 4 |
+
import shutil
|
| 5 |
+
import uvicorn
|
| 6 |
+
import os
|
| 7 |
+
from funasr import AutoModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from starlette.middleware import Middleware
|
| 9 |
from starlette.middleware.cors import CORSMiddleware
|
| 10 |
+
|
| 11 |
import logging
|
| 12 |
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 17 |
middleware=[
|
| 18 |
Middleware(
|
| 19 |
CORSMiddleware,
|
| 20 |
+
allow_origins=["*"], # Cho phép tất cả các origin
|
| 21 |
allow_credentials=True,
|
| 22 |
+
allow_methods=["*"], # Cho phép tất cả các phương thức
|
| 23 |
+
allow_headers=["*"], # Cho phép tất cả các header
|
| 24 |
)
|
| 25 |
]
|
| 26 |
)
|
| 27 |
+
# Tạo thư mục temp nếu chưa có
|
| 28 |
+
if not os.path.exists("temp"):
|
| 29 |
+
os.makedirs("temp")
|
| 30 |
+
|
| 31 |
+
# Load mô hình SenseVoiceSmall từ Hugging Face
|
| 32 |
+
model_dir = "FunAudioLLM/SenseVoiceSmall"
|
| 33 |
+
model = AutoModel(
|
| 34 |
+
model=model_dir,
|
| 35 |
+
vad_model="fsmn-vad",
|
| 36 |
+
vad_kwargs={"max_single_segment_time": 30000},
|
| 37 |
+
device="cuda:0",
|
| 38 |
+
hub="hf",
|
| 39 |
+
)
|
| 40 |
|
| 41 |
+
# Hàm tính RMS energy
|
| 42 |
+
def calculate_rms_energy(audio_path):
|
| 43 |
+
y, sr = librosa.load(audio_path)
|
| 44 |
+
rms = librosa.feature.rms(y=y)[0]
|
| 45 |
+
return np.mean(rms)
|
| 46 |
+
|
| 47 |
+
# Hàm phát hiện tiếng ồn
|
| 48 |
+
def detect_noise(audio_path):
|
| 49 |
+
rms_energy = calculate_rms_energy(audio_path)
|
| 50 |
+
res = model.generate(input=audio_path, language="auto", audio_event_detection=True)
|
| 51 |
+
audio_events = res[0].get("audio_event_detection", {})
|
| 52 |
+
|
| 53 |
+
if rms_energy > 0.02:
|
| 54 |
+
return "ồn ào"
|
| 55 |
+
elif rms_energy > 0.01:
|
| 56 |
+
for event_label, event_score in audio_events.items():
|
| 57 |
+
if event_score > 0.7 and event_label in ["laughter", "applause", "crying", "coughing"]:
|
| 58 |
+
return f"ồn ào ({event_label})"
|
| 59 |
+
return "yên tĩnh"
|
| 60 |
+
|
| 61 |
+
@app.get("/")
|
| 62 |
+
def read_root():
|
| 63 |
+
return {"message": "Hello, World!"}
|
| 64 |
+
|
| 65 |
+
print(app.routes)
|
| 66 |
+
|
| 67 |
+
# API nhận file âm thanh từ Flutter
|
| 68 |
@app.post("/detect-noise/")
|
| 69 |
async def detect_noise_api(file: UploadFile = File(...)):
|
| 70 |
+
try:
|
| 71 |
+
logger.info("Tên file: %s", file.filename)
|
| 72 |
+
logger.info("Loại file: %s", file.content_type)
|
| 73 |
+
file_size = len(await file.read())
|
| 74 |
+
logger.info("Kích thước file: %s bytes", file_size)
|
| 75 |
+
await file.seek(0) # Reset lại vị trí đọc file
|
| 76 |
+
|
| 77 |
+
file_path = f"temp/{file.filename}"
|
| 78 |
+
with open(file_path, "wb") as buffer:
|
| 79 |
+
shutil.copyfileobj(file.file, buffer)
|
| 80 |
+
|
| 81 |
+
result = detect_noise(file_path)
|
| 82 |
+
return {"noise_level": result}
|
| 83 |
+
except Exception as e:
|
| 84 |
+
logger.exception("Lỗi trong API: %s", e)
|
| 85 |
+
return {"error": str(e)}
|
| 86 |
+
|
| 87 |
+
# Chạy FastAPI trên Hugging Face Spaces
|
| 88 |
+
if __name__ == "__main__":
|
| 89 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# from fastapi import FastAPI, UploadFile, File
|
| 93 |
+
# from starlette.middleware import Middleware
|
| 94 |
+
# from starlette.middleware.cors import CORSMiddleware
|
| 95 |
+
# import logging
|
| 96 |
+
|
| 97 |
+
# logging.basicConfig(level=logging.INFO)
|
| 98 |
+
# logger = logging.getLogger(__name__)
|
| 99 |
+
|
| 100 |
+
# app = FastAPI(
|
| 101 |
+
# middleware=[
|
| 102 |
+
# Middleware(
|
| 103 |
+
# CORSMiddleware,
|
| 104 |
+
# allow_origins=["*"],
|
| 105 |
+
# allow_credentials=True,
|
| 106 |
+
# allow_methods=["*"],
|
| 107 |
+
# allow_headers=["*"],
|
| 108 |
+
# )
|
| 109 |
+
# ]
|
| 110 |
+
# )
|
| 111 |
+
|
| 112 |
+
# @app.post("/detect-noise/")
|
| 113 |
+
# async def detect_noise_api(file: UploadFile = File(...)):
|
| 114 |
+
# logger.info("Đã nhận được yêu cầu!")
|
| 115 |
+
# return {"message": "OK"}
|
| 116 |
|
| 117 |
|