Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
from peft import PeftModel
|
| 6 |
+
|
| 7 |
+
# Lazy load model and tokenizer on first request (more reliable on Spaces)
|
| 8 |
+
MODEL = None
|
| 9 |
+
TOKENIZER = None
|
| 10 |
+
|
| 11 |
+
def get_model():
|
| 12 |
+
global MODEL, TOKENIZER
|
| 13 |
+
if MODEL is None or TOKENIZER is None:
|
| 14 |
+
print("Loading model...")
|
| 15 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 16 |
+
"HuggingFaceTB/SmolLM-360M",
|
| 17 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 18 |
+
device_map="auto"
|
| 19 |
+
)
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-360M")
|
| 21 |
+
if tokenizer.pad_token is None:
|
| 22 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 23 |
+
|
| 24 |
+
# Load LoRA adapters
|
| 25 |
+
model = PeftModel.from_pretrained(base_model, "waliaMuskaan011/calendar-event-extractor-smollm")
|
| 26 |
+
model.eval()
|
| 27 |
+
MODEL, TOKENIZER = model, tokenizer
|
| 28 |
+
print("Model loaded successfully!")
|
| 29 |
+
return MODEL, TOKENIZER
|
| 30 |
+
|
| 31 |
+
def extract_calendar_event(event_text):
|
| 32 |
+
"""Extract calendar information from natural language text."""
|
| 33 |
+
|
| 34 |
+
if not event_text.strip():
|
| 35 |
+
return "Please enter some text describing a calendar event."
|
| 36 |
+
|
| 37 |
+
model, tokenizer = get_model()
|
| 38 |
+
|
| 39 |
+
# Build prompt
|
| 40 |
+
prompt = f"""Extract calendar fields from: "{event_text}".
|
| 41 |
+
Return ONLY valid JSON with keys [action,date,time,attendees,location,duration,recurrence,notes].
|
| 42 |
+
Use null for unknown.
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
# Tokenize and generate
|
| 47 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 48 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 49 |
+
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
outputs = model.generate(
|
| 52 |
+
**inputs,
|
| 53 |
+
max_new_tokens=160,
|
| 54 |
+
temperature=0.0,
|
| 55 |
+
do_sample=False,
|
| 56 |
+
pad_token_id=tokenizer.eos_token_id
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Decode response
|
| 60 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 61 |
+
|
| 62 |
+
# Extract JSON part (after the prompt)
|
| 63 |
+
response_start = full_response.find('"}')
|
| 64 |
+
if response_start != -1:
|
| 65 |
+
json_part = full_response[response_start + 2:].strip()
|
| 66 |
+
else:
|
| 67 |
+
# Fallback: take everything after "Use null for unknown."
|
| 68 |
+
prompt_end = full_response.find("Use null for unknown.")
|
| 69 |
+
if prompt_end != -1:
|
| 70 |
+
json_part = full_response[prompt_end + len("Use null for unknown."):].strip()
|
| 71 |
+
else:
|
| 72 |
+
json_part = full_response.split("\n")[-1].strip()
|
| 73 |
+
|
| 74 |
+
# Try to parse as JSON for validation
|
| 75 |
+
try:
|
| 76 |
+
parsed = json.loads(json_part)
|
| 77 |
+
return json.dumps(parsed, indent=2, ensure_ascii=False)
|
| 78 |
+
except json.JSONDecodeError:
|
| 79 |
+
return f"Generated (may need manual cleanup):\n{json_part}"
|
| 80 |
+
|
| 81 |
+
except Exception as e:
|
| 82 |
+
return f"Error processing request: {str(e)}"
|
| 83 |
+
|
| 84 |
+
# Create Gradio interface
|
| 85 |
+
with gr.Blocks(title="Calendar Event Extractor", theme=gr.themes.Soft()) as demo:
|
| 86 |
+
gr.Markdown("""
|
| 87 |
+
# π
Calendar Event Extractor
|
| 88 |
+
|
| 89 |
+
This AI model extracts structured calendar information from natural language text.
|
| 90 |
+
Powered by fine-tuned SmolLM-360M with LoRA adapters.
|
| 91 |
+
|
| 92 |
+
**Try it out**: Enter any calendar-related text and get structured JSON output!
|
| 93 |
+
""")
|
| 94 |
+
|
| 95 |
+
with gr.Row():
|
| 96 |
+
with gr.Column():
|
| 97 |
+
input_text = gr.Textbox(
|
| 98 |
+
label="π Event Description",
|
| 99 |
+
placeholder="e.g., 'Meeting with John tomorrow at 2pm for 1 hour'",
|
| 100 |
+
lines=3
|
| 101 |
+
)
|
| 102 |
+
extract_btn = gr.Button("π Extract Event Info", variant="primary")
|
| 103 |
+
|
| 104 |
+
with gr.Column():
|
| 105 |
+
output_json = gr.Textbox(
|
| 106 |
+
label="π Extracted Information (JSON)",
|
| 107 |
+
lines=10,
|
| 108 |
+
max_lines=15
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Examples
|
| 112 |
+
gr.Markdown("### π Try these examples:")
|
| 113 |
+
examples = gr.Examples(
|
| 114 |
+
examples=[
|
| 115 |
+
["Quick meeting at the coworking space on 10th May 2025 starting at 11:00 am for 45 minutes"],
|
| 116 |
+
["Coffee chat with Sarah tomorrow at 3pm"],
|
| 117 |
+
["Weekly standup every Monday at 9am on Zoom"],
|
| 118 |
+
["Doctor appointment next Friday at 2:30 PM for 30 minutes"],
|
| 119 |
+
["Team lunch at the new restaurant on 15th December"],
|
| 120 |
+
["Call with client on 25/12/2024 at 10:00 AM, needs to discuss project timeline"],
|
| 121 |
+
],
|
| 122 |
+
inputs=[input_text],
|
| 123 |
+
outputs=[output_json],
|
| 124 |
+
fn=extract_calendar_event,
|
| 125 |
+
cache_examples=False
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
extract_btn.click(
|
| 129 |
+
fn=extract_calendar_event,
|
| 130 |
+
inputs=[input_text],
|
| 131 |
+
outputs=[output_json]
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
gr.Markdown("""
|
| 135 |
+
---
|
| 136 |
+
**Model Details**: Fine-tuned SmolLM-360M using LoRA β’ **Dataset**: ~2500 calendar events β’ **Training**: Custom augmentation pipeline
|
| 137 |
+
|
| 138 |
+
[π Model Card](https://huggingface.co/waliaMuskaan011/calendar-event-extractor-smollm) β’ [π» Training Code](https://github.com/muskaanwalia098/Calendar-Event-Entity-Extraction)
|
| 139 |
+
""")
|
| 140 |
+
|
| 141 |
+
if __name__ == "__main__":
|
| 142 |
+
demo.launch()
|