ohayonguy
commited on
Commit
·
5afc7ad
1
Parent(s):
9a668a2
added support for num steps
Browse files
app.py
CHANGED
|
@@ -58,7 +58,7 @@ def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, dev
|
|
| 58 |
|
| 59 |
@torch.inference_mode()
|
| 60 |
@spaces.GPU()
|
| 61 |
-
def enhance_face(img, face_helper, has_aligned, only_center_face=False, paste_back=True, scale=2):
|
| 62 |
face_helper.clean_all()
|
| 63 |
|
| 64 |
if has_aligned: # the inputs are already aligned
|
|
@@ -79,7 +79,7 @@ def enhance_face(img, face_helper, has_aligned, only_center_face=False, paste_ba
|
|
| 79 |
|
| 80 |
dummy_x = torch.zeros_like(cropped_face_t)
|
| 81 |
with torch.autocast("cuda", dtype=torch.bfloat16):
|
| 82 |
-
output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None,
|
| 83 |
restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1))
|
| 84 |
# restored_face = cropped_face
|
| 85 |
|
|
@@ -104,7 +104,7 @@ def enhance_face(img, face_helper, has_aligned, only_center_face=False, paste_ba
|
|
| 104 |
|
| 105 |
@torch.inference_mode()
|
| 106 |
@spaces.GPU()
|
| 107 |
-
def inference(img, aligned, scale,
|
| 108 |
if scale > 4:
|
| 109 |
scale = 4 # avoid too large scale value
|
| 110 |
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
|
@@ -136,7 +136,7 @@ def inference(img, aligned, scale, num_steps):
|
|
| 136 |
|
| 137 |
has_aligned = True if aligned == 'Yes' else False
|
| 138 |
_, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False,
|
| 139 |
-
paste_back=True)
|
| 140 |
if has_aligned:
|
| 141 |
output = restored_aligned[0]
|
| 142 |
else:
|
|
|
|
| 58 |
|
| 59 |
@torch.inference_mode()
|
| 60 |
@spaces.GPU()
|
| 61 |
+
def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2):
|
| 62 |
face_helper.clean_all()
|
| 63 |
|
| 64 |
if has_aligned: # the inputs are already aligned
|
|
|
|
| 79 |
|
| 80 |
dummy_x = torch.zeros_like(cropped_face_t)
|
| 81 |
with torch.autocast("cuda", dtype=torch.bfloat16):
|
| 82 |
+
output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, num_flow_steps, device)
|
| 83 |
restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1))
|
| 84 |
# restored_face = cropped_face
|
| 85 |
|
|
|
|
| 104 |
|
| 105 |
@torch.inference_mode()
|
| 106 |
@spaces.GPU()
|
| 107 |
+
def inference(img, aligned, scale, num_flow_steps):
|
| 108 |
if scale > 4:
|
| 109 |
scale = 4 # avoid too large scale value
|
| 110 |
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
|
|
|
| 136 |
|
| 137 |
has_aligned = True if aligned == 'Yes' else False
|
| 138 |
_, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False,
|
| 139 |
+
paste_back=True, num_flow_steps=num_flow_steps)
|
| 140 |
if has_aligned:
|
| 141 |
output = restored_aligned[0]
|
| 142 |
else:
|