Spaces:
Runtime error
Runtime error
| """ | |
| This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”). | |
| All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates. | |
| Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/maskformer_model.py | |
| """ | |
| from typing import Tuple | |
| import os | |
| import numpy as np | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from torchvision import transforms as T | |
| from detectron2.config import configurable | |
| from detectron2.data import MetadataCatalog | |
| from detectron2.modeling import META_ARCH_REGISTRY, build_backbone | |
| from detectron2.modeling.backbone import Backbone | |
| from detectron2.modeling.postprocessing import sem_seg_postprocess | |
| from detectron2.structures import Boxes, ImageList, Instances, BitMasks | |
| from detectron2.utils.memory import retry_if_cuda_oom | |
| from .modeling.maft.content_dependent_transfer import ContentDependentTransfer | |
| from .modeling.meta_arch.mask_adapter_head import build_mask_adapter | |
| VILD_PROMPT = [ | |
| "a photo of a {}.", | |
| "This is a photo of a {}", | |
| "There is a {} in the scene", | |
| "There is the {} in the scene", | |
| "a photo of a {} in the scene", | |
| "a photo of a small {}.", | |
| "a photo of a medium {}.", | |
| "a photo of a large {}.", | |
| "This is a photo of a small {}.", | |
| "This is a photo of a medium {}.", | |
| "This is a photo of a large {}.", | |
| "There is a small {} in the scene.", | |
| "There is a medium {} in the scene.", | |
| "There is a large {} in the scene.", | |
| ] | |
| class MASK_Adapter(nn.Module): | |
| """ | |
| Main class for mask classification semantic segmentation architectures. | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| backbone: Backbone, | |
| mask_adapter: nn.Module, | |
| weight_dict, | |
| num_queries: int, | |
| object_mask_threshold: float, | |
| overlap_threshold: float, | |
| mask_threshold: float, | |
| train_metadata, | |
| test_metadata, | |
| size_divisibility: int, | |
| sem_seg_postprocess_before_inference: bool, | |
| pixel_mean: Tuple[float], | |
| pixel_std: Tuple[float], | |
| # inference | |
| semantic_on: bool, | |
| panoptic_on: bool, | |
| instance_on: bool, | |
| test_topk_per_image: int, | |
| train_maft : bool, | |
| num_output_maps: int, | |
| ): | |
| """ | |
| Args: | |
| backbone: a backbone module, must follow detectron2's backbone interface | |
| mask_adapter: mask-adapter extract semantic activation maps from masks | |
| weight_dict: dict contains weight for each loss | |
| num_queries: int, number of queries | |
| object_mask_threshold: float, threshold to filter query based on classification score | |
| for panoptic segmentation inference | |
| overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
| metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
| segmentation inference | |
| size_divisibility: Some backbones require the input height and width to be divisible by a | |
| specific integer. We can use this to override such requirement. | |
| sem_seg_postprocess_before_inference: whether to resize the prediction back | |
| to original input size before semantic segmentation inference or after. | |
| For high-resolution dataset like Mapillary, resizing predictions before | |
| inference will cause OOM error. | |
| pixel_mean, pixel_std: list or tuple with #channels element, representing | |
| the per-channel mean and std to be used to normalize the input image | |
| semantic_on: bool, whether to output semantic segmentation prediction | |
| instance_on: bool, whether to output instance segmentation prediction | |
| panoptic_on: bool, whether to output panoptic segmentation prediction | |
| test_topk_per_image: int, instance segmentation parameter, keep topk instances per image | |
| """ | |
| super().__init__() | |
| self.backbone = backbone | |
| self.mask_adapter = mask_adapter | |
| self.weight_dict = weight_dict | |
| self.num_queries = num_queries | |
| self.overlap_threshold = overlap_threshold | |
| self.object_mask_threshold = object_mask_threshold | |
| self.mask_threshold = mask_threshold | |
| self.train_metadata = train_metadata | |
| self.test_metadata = test_metadata | |
| if size_divisibility < 0: | |
| # use backbone size_divisibility if not set | |
| size_divisibility = self.backbone.size_divisibility | |
| self.size_divisibility = size_divisibility | |
| self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference | |
| self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) | |
| self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) | |
| # additional args | |
| self.semantic_on = semantic_on | |
| self.instance_on = instance_on | |
| self.panoptic_on = panoptic_on | |
| self.test_topk_per_image = test_topk_per_image | |
| if not self.semantic_on: | |
| assert self.sem_seg_postprocess_before_inference | |
| self.void_embedding = nn.Embedding(1, backbone.dim_latent) | |
| self.train_dataname = None | |
| self.test_dataname = None | |
| self.train_num_templates = {} | |
| self.train_text_classifier = {} | |
| self.train_maft = train_maft | |
| self.num_output_maps = num_output_maps | |
| if self.train_maft: | |
| if '_base' in backbone.model_name.lower(): | |
| cdt_params = [640, 8] | |
| elif '_large' in backbone.model_name.lower(): | |
| cdt_params = [768, 8] | |
| self.cdt = ContentDependentTransfer(d_model = cdt_params[0], nhead = cdt_params[1], panoptic_on = panoptic_on) | |
| self.freeze_cdt() | |
| def freeze_cdt(self): | |
| for param in self.cdt.parameters(): | |
| param.requires_grad = False | |
| #https://github.com/bytedance/fc-clip/blob/2b0bbe213070d44da9182530fa2e826fef03f974/fcclip/fcclip.py#L139 | |
| def prepare_class_names_from_metadata(self, metadata, train_metadata): | |
| def split_labels(x): | |
| res = [] | |
| for x_ in x: | |
| x_ = x_.replace(', ', ',') | |
| x_ = x_.split(',') # there can be multiple synonyms for single class | |
| res.append(x_) | |
| return res | |
| # get text classifier | |
| try: | |
| class_names = split_labels(metadata.stuff_classes) # it includes both thing and stuff | |
| train_class_names = split_labels(train_metadata.stuff_classes) | |
| except: | |
| # this could be for insseg, where only thing_classes are available | |
| class_names = split_labels(metadata.thing_classes) | |
| train_class_names = split_labels(train_metadata.thing_classes) | |
| train_class_names = {l for label in train_class_names for l in label} | |
| category_overlapping_list = [] | |
| for test_class_names in class_names: | |
| is_overlapping = not set(train_class_names).isdisjoint(set(test_class_names)) | |
| category_overlapping_list.append(is_overlapping) | |
| category_overlapping_mask = torch.tensor( | |
| category_overlapping_list, dtype=torch.long) | |
| def fill_all_templates_ensemble(x_=''): | |
| res = [] | |
| for x in x_: | |
| for template in VILD_PROMPT: | |
| res.append(template.format(x)) | |
| return res, len(res) // len(VILD_PROMPT) | |
| num_templates = [] | |
| templated_class_names = [] | |
| for x in class_names: | |
| templated_classes, templated_classes_num = fill_all_templates_ensemble(x) | |
| templated_class_names += templated_classes | |
| num_templates.append(templated_classes_num) # how many templates for current classes | |
| class_names = templated_class_names | |
| #print("text for classification:", class_names) | |
| return category_overlapping_mask, num_templates, class_names | |
| def set_metadata(self, metadata): | |
| self.test_metadata = metadata | |
| self.category_overlapping_mask, self.test_num_templates, self.test_class_names = self.prepare_class_names_from_metadata(metadata, self.train_metadata) | |
| self.test_text_classifier = None | |
| return | |
| def get_text_classifier(self, dataname): | |
| if self.training: | |
| os.makedirs("text_embedding", exist_ok=True) | |
| out_path = f"./text_embedding/{dataname}_text_embedding.npy" | |
| if dataname in self.train_text_classifier: | |
| return self.train_text_classifier[dataname], self.train_num_templates[dataname] | |
| if dataname not in self.train_num_templates: | |
| _, self.train_num_templates[dataname], train_class_names = self.prepare_class_names_from_metadata( | |
| self.train_metadata[dataname], self.train_metadata[dataname] | |
| ) | |
| if os.path.exists(out_path): | |
| text_classifier = torch.from_numpy(np.load(out_path)).to(self.device) | |
| else: | |
| text_classifier = [] | |
| bs = 128 | |
| for idx in range(0, len(train_class_names), bs): | |
| text_classifier.append( | |
| self.backbone.get_text_classifier(train_class_names[idx:idx+bs], self.device).detach() | |
| ) | |
| text_classifier = torch.cat(text_classifier, dim=0) | |
| text_classifier /= text_classifier.norm(dim=-1, keepdim=True) | |
| text_classifier = text_classifier.reshape(text_classifier.shape[0] // len(VILD_PROMPT), len(VILD_PROMPT), text_classifier.shape[-1]).mean(1) | |
| text_classifier /= text_classifier.norm(dim=-1, keepdim=True) | |
| np.save(out_path, text_classifier.cpu().numpy()) | |
| self.train_text_classifier[dataname] = text_classifier | |
| return self.train_text_classifier[dataname], self.train_num_templates[dataname] | |
| else: | |
| if self.test_dataname != dataname: | |
| self.category_overlapping_mask, self.test_num_templates, self.test_class_names = self.prepare_class_names_from_metadata( | |
| self.test_metadata[dataname], self.test_metadata[dataname] | |
| ) | |
| text_classifier = [] | |
| bs = 128 | |
| for idx in range(0, len(self.test_class_names), bs): | |
| text_classifier.append( | |
| self.backbone.get_text_classifier(self.test_class_names[idx:idx+bs], self.device).detach() | |
| ) | |
| text_classifier = torch.cat(text_classifier, dim=0) | |
| text_classifier /= text_classifier.norm(dim=-1, keepdim=True) | |
| text_classifier = text_classifier.reshape(text_classifier.shape[0] // len(VILD_PROMPT), len(VILD_PROMPT), text_classifier.shape[-1]).mean(1) | |
| text_classifier /= text_classifier.norm(dim=-1, keepdim=True) | |
| self.test_text_classifier = text_classifier | |
| self.test_dataname = dataname | |
| return self.test_text_classifier, self.test_num_templates | |
| def from_config(cls, cfg): | |
| backbone = build_backbone(cfg) | |
| mask_adapter = build_mask_adapter(cfg, cfg.MODEL.MASK_ADAPTER.NAME) | |
| # loss weights | |
| class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT | |
| # building criterion | |
| weight_dict = {"loss_ce": class_weight} | |
| losses = ["labels"] | |
| train_metadata = {i: MetadataCatalog.get(i) for i in cfg.DATASETS.TRAIN} | |
| test_metadata = {i: MetadataCatalog.get(i) for i in cfg.DATASETS.TEST} | |
| return { | |
| "backbone": backbone, | |
| "mask_adapter": mask_adapter, | |
| "weight_dict": weight_dict, | |
| "num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES, | |
| "object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD, | |
| "overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD, | |
| "mask_threshold": cfg.MODEL.MASK_ADAPTER.MASK_THRESHOLD, | |
| "train_metadata": train_metadata,#MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), | |
| "test_metadata": test_metadata, # MetadataCatalog.get(cfg.DATASETS.TEST[0]), | |
| "size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY, | |
| "sem_seg_postprocess_before_inference": ( | |
| cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE | |
| or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON | |
| or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON | |
| ), | |
| "pixel_mean": cfg.MODEL.PIXEL_MEAN, | |
| "pixel_std": cfg.MODEL.PIXEL_STD, | |
| # inference | |
| "semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON, | |
| "instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON, | |
| "panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON, | |
| "test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE, | |
| "train_maft": cfg.MODEL.MASK_ADAPTER.TRAIN_MAFT, | |
| "num_output_maps": cfg.MODEL.MASK_ADAPTER.NUM_OUTPUT_MAPS | |
| } | |
| def device(self): | |
| return self.pixel_mean.device | |
| def forward(self, batched_inputs): | |
| """ | |
| Args: | |
| batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
| Each item in the list contains the inputs for one image. | |
| For now, each item in the list is a dict that contains: | |
| * "image": Tensor, image in (C, H, W) format. | |
| * "instances": per-region ground truth | |
| * Other information that's included in the original dicts, such as: | |
| "height", "width" (int): the output resolution of the model (may be different | |
| from input resolution), used in inference. | |
| Returns: | |
| list[dict]: | |
| each dict has the results for one image. The dict contains the following keys: | |
| * "sem_seg": | |
| A Tensor that represents the | |
| per-pixel segmentation prediced by the head. | |
| The prediction has shape KxHxW that represents the logits of | |
| each class for each pixel. | |
| * "panoptic_seg": | |
| A tuple that represent panoptic output | |
| panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
| segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
| Each dict contains keys "id", "category_id", "isthing". | |
| """ | |
| if self.train_maft and self.training : | |
| dataname = "openvocab_coco_2017_train_stuff_sem_seg" | |
| else: | |
| dataname = batched_inputs[0]['dataname'] | |
| if self.training: | |
| dataname_2 = batched_inputs[1]['dataname'] | |
| assert dataname == dataname_2, f"expect batch img from same dataset, but different from {dataname} and {dataname_2}" | |
| images = [x["image"].to(self.device) for x in batched_inputs] | |
| images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
| images = ImageList.from_tensors(images, self.size_divisibility) | |
| features = self.backbone(images.tensor) | |
| clip_feature = features['clip_vis_dense'] | |
| text_classifier, num_templates = self.get_text_classifier(dataname) | |
| text_classifier = torch.cat([text_classifier, F.normalize(self.void_embedding.weight, dim=-1)], dim=0) | |
| clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature) | |
| if self.train_maft: | |
| #https://github.com/jiaosiyu1999/MAFT-Plus/blob/fd12806df651d309883229de9503e40533f92689/maft/maft_plus.py#L352 | |
| #For maftp,it uses a wrong reshape operation to get clip_vis_dense. Since we don't finetune cdt, we follow them. | |
| img_feat = self.visual_prediction_forward_convnext(clip_feature) | |
| text_classifier = self.cdt(img_feat, text_classifier) | |
| clip_vis_dense = img_feat | |
| else: | |
| clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature) | |
| if self.training: | |
| # mask classification target | |
| if "instances" in batched_inputs[0]: | |
| gt_instances = [x["instances"].to(self.device) for x in batched_inputs] | |
| targets,masks,labels = self.prepare_targets(gt_instances, images) | |
| else: | |
| targets = None | |
| semantic_activation_maps = self.mask_adapter(clip_vis_dense, masks) | |
| maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:], | |
| mode='bilinear', align_corners=False) | |
| if "convnext" in self.backbone.model_name.lower(): | |
| B, C = clip_feature.size(0),clip_feature.size(1) | |
| N = maps_for_pooling.size(1) | |
| num_instances = N // self.num_output_maps | |
| maps_for_pooling = F.softmax(F.logsigmoid(maps_for_pooling).view(B, N,-1), dim=-1) | |
| pooled_clip_feature = torch.bmm(maps_for_pooling, clip_feature.view(B, C, -1).permute(0, 2, 1)) | |
| pooled_clip_feature = self.backbone.visual_prediction_forward(pooled_clip_feature) | |
| pooled_clip_feature = (pooled_clip_feature.reshape(B,num_instances, self.num_output_maps, -1).mean(dim=-2).contiguous()) | |
| else: | |
| raise NotImplementedError | |
| mask_cls_results = get_classification_logits(pooled_clip_feature, text_classifier, self.backbone.clip_model.logit_scale, num_templates) | |
| losses = self.cross_entropy_loss(mask_cls_results, labels) | |
| for k in list(losses.keys()): | |
| if k in self.weight_dict: | |
| losses[k] *= self.weight_dict[k] | |
| else: | |
| # remove this loss if not specified in `weight_dict` | |
| losses.pop(k) | |
| return losses | |
| else: | |
| masks = [] | |
| classes = [] | |
| for input_per_image in batched_inputs: | |
| height = input_per_image.get("height") | |
| width = input_per_image.get("width") | |
| sem_seg = input_per_image["sem_seg"].to(self.device) | |
| total_masks,class_label = self.sem_seg_2_gt_masks(sem_seg, height, width) | |
| masks.append(total_masks) | |
| classes.append(class_label) | |
| masks = torch.stack(masks) | |
| classes = torch.stack(classes) | |
| outputs = self.mask_adapter(clip_vis_dense, masks) | |
| maps_for_pooling = F.interpolate(outputs, size=clip_vis_dense.shape[-2:], | |
| mode='bilinear', align_corners=False) | |
| if "convnext" in self.backbone.model_name.lower(): | |
| B,C = clip_feature.size(0),clip_feature.size(1) | |
| N = maps_for_pooling.size(1) | |
| num_instances = N // self.num_output_maps | |
| maps_for_pooling = F.softmax(F.logsigmoid(maps_for_pooling).view(B, N,-1), dim=-1) | |
| pooled_clip_feature = torch.bmm(maps_for_pooling, clip_feature.view(B, C, -1).permute(0, 2, 1)) | |
| pooled_clip_feature = self.backbone.visual_prediction_forward(pooled_clip_feature) | |
| pooled_clip_feature = (pooled_clip_feature.reshape(B,num_instances, self.num_output_maps, -1).mean(dim=-2).contiguous()) | |
| else: | |
| raise NotImplementedError | |
| mask_cls_results = get_classification_logits(pooled_clip_feature, text_classifier, self.backbone.clip_model.logit_scale, num_templates) | |
| mask_cls_results = mask_cls_results.softmax(-1) | |
| #upsample masks | |
| mask_pred_results = F.interpolate( | |
| masks, | |
| size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
| mode="bilinear", | |
| align_corners=False, | |
| ) | |
| processed_results = [] | |
| for mask_cls_result, mask_pred_result, input_per_image, image_size in zip( | |
| mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes | |
| ): | |
| height = input_per_image.get("height", image_size[0]) | |
| width = input_per_image.get("width", image_size[1]) | |
| processed_results.append({}) | |
| if self.sem_seg_postprocess_before_inference: | |
| mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
| mask_pred_result, image_size, height, width | |
| ) | |
| mask_cls_result = mask_cls_result.to(mask_pred_result) | |
| mask_pred_result = mask_pred_result.squeeze(1) | |
| # semantic segmentation inference | |
| if self.semantic_on: | |
| r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result) | |
| if not self.sem_seg_postprocess_before_inference: | |
| r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width) | |
| processed_results[-1]["sem_seg"] = r | |
| # panoptic segmentation inference | |
| if self.panoptic_on: | |
| panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result) | |
| processed_results[-1]["panoptic_seg"] = panoptic_r | |
| # instance segmentation inference | |
| if self.instance_on: | |
| instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result) | |
| processed_results[-1]["instances"] = instance_r | |
| return processed_results | |
| def sem_seg_2_gt_masks(self, sem_seg, height, width): | |
| classes = torch.unique(sem_seg,sorted=False,return_inverse=False,return_counts=False) | |
| gt_labels = classes[classes != 255] | |
| masks = [sem_seg == class_id for class_id in gt_labels] | |
| if len(masks) == 0: | |
| gt_masks = torch.zeros((0, sem_seg.shape[-2], | |
| sem_seg.shape[-1])).to(sem_seg) | |
| else: | |
| gt_masks = torch.stack(masks).squeeze(1) | |
| num_masks = gt_masks.shape[0] | |
| total_masks = torch.zeros((num_masks, gt_masks.shape[1], gt_masks.shape[2]), dtype=gt_masks.dtype, device=gt_masks.device) | |
| labels = torch.zeros((num_masks), device=gt_masks.device) | |
| total_masks[:num_masks] = gt_masks[:num_masks] | |
| labels[:num_masks] = gt_labels[:num_masks] | |
| return total_masks.float(), labels | |
| def visual_prediction_forward_convnext(self, x): | |
| batch, channel, h, w = x.shape | |
| x = x.reshape(batch*h*w, channel).unsqueeze(-1).unsqueeze(-1) # fake 2D input | |
| x = self.backbone.clip_model.visual.trunk.head(x) | |
| x = self.backbone.clip_model.visual.head(x) | |
| return x.reshape(batch, h, w, x.shape[-1]).permute(0,3,1,2) | |
| def visual_prediction_forward_convnext_2d(self, x): | |
| clip_vis_dense = self.backbone.clip_model.visual.trunk.head.norm(x) | |
| clip_vis_dense = self.backbone.clip_model.visual.trunk.head.drop(clip_vis_dense.permute(0, 2, 3, 1)) | |
| clip_vis_dense = self.backbone.clip_model.visual.head(clip_vis_dense).permute(0, 3, 1, 2) | |
| return clip_vis_dense | |
| def cross_entropy_loss(self, mask_cls_results, labels): | |
| if torch.all(labels == -1): | |
| loss_ce = mask_cls_results.sum() * 0.0 | |
| else: | |
| loss_ce = F.cross_entropy(mask_cls_results.transpose(1, 2), labels.to(torch.int64), ignore_index=-1) #remove celoss weight because of multiple datasets training | |
| losses = {"loss_ce": loss_ce} | |
| return losses | |
| def prepare_targets(self, targets, images): | |
| h_pad, w_pad = images.tensor.shape[-2:] | |
| new_targets = [] | |
| masks_list = [] | |
| labels_list = [] | |
| num_masks = 32 | |
| min_mask_area = 0 | |
| for targets_per_image in targets: | |
| gt_masks = targets_per_image.gt_masks | |
| if isinstance(gt_masks, BitMasks): | |
| gt_masks = gt_masks.tensor | |
| valid_mask_indices = [i for i, mask in enumerate(gt_masks) if mask.sum() > min_mask_area] | |
| if len(valid_mask_indices) > 0: | |
| valid_gt_masks = gt_masks[valid_mask_indices] | |
| valid_gt_classes = targets_per_image.gt_classes[valid_mask_indices] | |
| padded_masks = torch.zeros((valid_gt_masks.shape[0], h_pad, w_pad), dtype=valid_gt_masks.dtype, device=valid_gt_masks.device) | |
| padded_masks[:, : valid_gt_masks.shape[1], : valid_gt_masks.shape[2]] = valid_gt_masks | |
| new_targets.append( | |
| { | |
| "labels": valid_gt_classes, | |
| "masks": padded_masks, | |
| } | |
| ) | |
| total_masks = torch.zeros((num_masks, h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
| selected_labels = torch.zeros((num_masks), device=gt_masks.device) | |
| if valid_gt_masks.shape[0] > num_masks: | |
| selected_indices = torch.randperm(valid_gt_masks.shape[0])[:num_masks] | |
| for idx, mask_idx in enumerate(selected_indices): | |
| total_masks[idx, :valid_gt_masks[mask_idx].shape[0], :valid_gt_masks[mask_idx].shape[1]] = valid_gt_masks[mask_idx] | |
| selected_labels[idx] = valid_gt_classes[mask_idx] | |
| else: | |
| for idx in range(valid_gt_masks.shape[0]): | |
| total_masks[idx, :valid_gt_masks[idx].shape[0], :valid_gt_masks[idx].shape[1]] = valid_gt_masks[idx] | |
| selected_labels[idx] = valid_gt_classes[idx] | |
| for idx in range(valid_gt_masks.shape[0], num_masks): | |
| total_masks[idx] = torch.zeros((h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
| selected_labels[idx] = -1 | |
| else: | |
| total_masks = torch.zeros((num_masks, h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
| selected_labels = torch.zeros((num_masks), device=gt_masks.device) | |
| selected_labels.fill_(-1) | |
| padded_masks = torch.zeros((0, h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
| valid_gt_classes = torch.zeros((0), device=gt_masks.device) | |
| new_targets.append( | |
| { | |
| "labels": valid_gt_classes, | |
| "masks": padded_masks, | |
| } | |
| ) | |
| masks_list.append(total_masks) | |
| labels_list.append(selected_labels) | |
| masks = torch.stack(masks_list, dim=0) | |
| labels = torch.stack(labels_list, dim=0) | |
| labels = labels.long() | |
| return new_targets, masks, labels | |
| def semantic_inference(self, mask_cls, mask_pred): | |
| mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
| if mask_pred.dim() == 4: | |
| mask_pred = mask_pred.squeeze(dim=0) | |
| #mask_pred = mask_pred.sigmoid() #remove because of gt masks | |
| semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) | |
| return semseg | |
| def panoptic_inference(self, mask_cls, mask_pred): | |
| scores, labels = F.softmax(mask_cls, dim=-1).max(-1) | |
| num_classes = len(self.test_metadata[self.test_dataname].stuff_classes) | |
| keep = labels.ne(num_classes) & (scores > self.object_mask_threshold) | |
| cur_scores = scores[keep] | |
| cur_classes = labels[keep] | |
| cur_masks = mask_pred[keep] | |
| cur_mask_cls = mask_cls[keep] | |
| cur_mask_cls = cur_mask_cls[:, :-1] | |
| cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks | |
| h, w = cur_masks.shape[-2:] | |
| panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device) | |
| segments_info = [] | |
| current_segment_id = 0 | |
| if cur_masks.shape[0] == 0: | |
| # We didn't detect any mask :( | |
| return panoptic_seg, segments_info | |
| else: | |
| # take argmax | |
| cur_mask_ids = cur_prob_masks.argmax(0) | |
| stuff_memory_list = {} | |
| for k in range(cur_classes.shape[0]): | |
| pred_class = cur_classes[k].item() | |
| isthing = pred_class in self.test_metadata[self.test_dataname].thing_dataset_id_to_contiguous_id.values() | |
| mask_area = (cur_mask_ids == k).sum().item() | |
| original_area = (cur_masks[k] >= 0.5).sum().item() | |
| mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5) | |
| if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: | |
| if mask_area / original_area < self.overlap_threshold: | |
| continue | |
| # merge stuff regions | |
| if not isthing: | |
| if int(pred_class) in stuff_memory_list.keys(): | |
| panoptic_seg[mask] = stuff_memory_list[int(pred_class)] | |
| continue | |
| else: | |
| stuff_memory_list[int(pred_class)] = current_segment_id + 1 | |
| current_segment_id += 1 | |
| panoptic_seg[mask] = current_segment_id | |
| segments_info.append( | |
| { | |
| "id": current_segment_id, | |
| "isthing": bool(isthing), | |
| "category_id": int(pred_class), | |
| } | |
| ) | |
| return panoptic_seg, segments_info | |
| def instance_inference(self, mask_cls, mask_pred): | |
| # mask_pred is already processed to have the same shape as original input | |
| image_size = mask_pred.shape[-2:] | |
| # [Q, K] | |
| #scores = F.softmax(mask_cls, dim=-1)[:, :-1] #[250,150] | |
| scores = mask_cls[:, :-1].sigmoid() | |
| # if this is panoptic segmentation | |
| if self.panoptic_on: | |
| num_classes = len(self.test_metadata[self.test_dataname].stuff_classes) | |
| else: | |
| num_classes = len(self.test_metadata[self.test_dataname].thing_classes) | |
| labels = torch.arange(num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) | |
| # scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) | |
| scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) | |
| labels_per_image = labels[topk_indices] | |
| topk_indices = topk_indices // num_classes | |
| # mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1) | |
| mask_pred = mask_pred[topk_indices] | |
| # if this is panoptic segmentation, we only keep the "thing" classes | |
| if self.panoptic_on: | |
| keep = torch.zeros_like(scores_per_image).bool() | |
| for i, lab in enumerate(labels_per_image): | |
| keep[i] = lab in self.test_metadata[self.test_dataname].thing_dataset_id_to_contiguous_id.values() | |
| scores_per_image = scores_per_image[keep] | |
| labels_per_image = labels_per_image[keep] | |
| mask_pred = mask_pred[keep] | |
| result = Instances(image_size) | |
| # mask (before sigmoid) | |
| result.pred_masks = (mask_pred > self.mask_threshold).float() | |
| result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) | |
| # Uncomment the following to get boxes from masks (this is slow) | |
| # result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() | |
| # calculate average mask prob | |
| mask_scores_per_image = (mask_pred.flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) | |
| result.scores = scores_per_image * mask_scores_per_image | |
| result.pred_classes = labels_per_image | |
| return result | |
| class MaskPooling(nn.Module): | |
| def __init__( | |
| self,mask_threshold | |
| ): | |
| super().__init__() | |
| self.mask_threshold = mask_threshold | |
| def forward(self, x, mask): | |
| """ | |
| Args: | |
| x: [B, C, H, W] | |
| mask: [B, Q, H, W] | |
| """ | |
| if not x.shape[-2:] == mask.shape[-2:]: | |
| # reshape mask to x | |
| mask = F.interpolate(mask, size=x.shape[-2:], mode='bilinear', align_corners=False) | |
| with torch.no_grad(): | |
| mask = mask.detach() | |
| binary_mask = (mask > self.mask_threshold).to(mask.dtype) | |
| mask = binary_mask * mask | |
| denorm = mask.sum(dim=(-1, -2), keepdim=True) + 1e-8 | |
| mask_pooled_x = torch.einsum( | |
| "bchw,bqhw->bqc", | |
| x, | |
| mask / denorm, | |
| ) | |
| return mask_pooled_x | |
| def get_classification_logits(x, text_classifier, logit_scale, num_templates=None): | |
| # x in shape of [B, *, C] | |
| # text_classifier in shape of [num_classes, C] | |
| # logit_scale is a learnable scalar https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/model.py#L201 | |
| # return: [B, *, num_classes] | |
| x = F.normalize(x, dim=-1) | |
| logit_scale = torch.clamp(logit_scale.exp(), max=100) | |
| if len(text_classifier.shape) == 2: | |
| pred_logits = logit_scale * x @ text_classifier.T # B, *, N + 1 | |
| else: | |
| pred_logits = logit_scale * x @ text_classifier.permute(0,2,1) # B, *, N + 1 | |
| # max ensembel as in OpenSeg/ODISE | |
| if pred_logits.shape[2] != 1204 and pred_logits.shape[2] != 366: | |
| final_pred_logits = [] | |
| cur_idx = 0 | |
| for num_t in num_templates: | |
| final_pred_logits.append(pred_logits[:, :, cur_idx: cur_idx + num_t].max(-1).values) | |
| cur_idx += num_t | |
| final_pred_logits.append(pred_logits[:, :, -1]) # the last classifier is for void | |
| final_pred_logits = torch.stack(final_pred_logits, dim=-1) | |
| else: | |
| final_pred_logits = pred_logits | |
| return final_pred_logits |