Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import torch | |
| import torchvision.transforms as T | |
| from decord import VideoReader, cpu | |
| from PIL import Image | |
| from torchvision.transforms.functional import InterpolationMode | |
| from transformers import AutoModel, AutoTokenizer | |
| IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
| IMAGENET_STD = (0.229, 0.224, 0.225) | |
| def build_transform(input_size): | |
| MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
| transform = T.Compose([ | |
| T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
| T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
| T.ToTensor(), | |
| T.Normalize(mean=MEAN, std=STD) | |
| ]) | |
| return transform | |
| def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
| best_ratio_diff = float('inf') | |
| best_ratio = (1, 1) | |
| area = width * height | |
| for ratio in target_ratios: | |
| target_aspect_ratio = ratio[0] / ratio[1] | |
| ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
| if ratio_diff < best_ratio_diff: | |
| best_ratio_diff = ratio_diff | |
| best_ratio = ratio | |
| elif ratio_diff == best_ratio_diff: | |
| if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
| best_ratio = ratio | |
| return best_ratio | |
| def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
| orig_width, orig_height = image.size | |
| aspect_ratio = orig_width / orig_height | |
| # calculate the existing image aspect ratio | |
| target_ratios = set( | |
| (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
| i * j <= max_num and i * j >= min_num) | |
| target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
| # find the closest aspect ratio to the target | |
| target_aspect_ratio = find_closest_aspect_ratio( | |
| aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
| # calculate the target width and height | |
| target_width = image_size * target_aspect_ratio[0] | |
| target_height = image_size * target_aspect_ratio[1] | |
| blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
| # resize the image | |
| resized_img = image.resize((target_width, target_height)) | |
| processed_images = [] | |
| for i in range(blocks): | |
| box = ( | |
| (i % (target_width // image_size)) * image_size, | |
| (i // (target_width // image_size)) * image_size, | |
| ((i % (target_width // image_size)) + 1) * image_size, | |
| ((i // (target_width // image_size)) + 1) * image_size | |
| ) | |
| # split the image | |
| split_img = resized_img.crop(box) | |
| processed_images.append(split_img) | |
| assert len(processed_images) == blocks | |
| if use_thumbnail and len(processed_images) != 1: | |
| thumbnail_img = image.resize((image_size, image_size)) | |
| processed_images.append(thumbnail_img) | |
| return processed_images | |
| def load_image(image_file, input_size=448, max_num=12): | |
| image = Image.open(image_file).convert('RGB') | |
| transform = build_transform(input_size=input_size) | |
| images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
| pixel_values = [transform(image) for image in images] | |
| pixel_values = torch.stack(pixel_values) | |
| return pixel_values | |
| # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section. | |
| path = 'OpenGVLab/InternVL2_5-1B' | |
| model = AutoModel.from_pretrained( | |
| path, | |
| torch_dtype=torch.bfloat16, | |
| low_cpu_mem_usage=True, | |
| use_flash_attn=True, | |
| trust_remote_code=True).eval().cuda() | |
| tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) | |
| # set the max number of tiles in `max_num` | |
| pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() | |
| generation_config = dict(max_new_tokens=1024, do_sample=True) | |
| # pure-text conversation (纯文本对话) | |
| question = 'Hello, who are you?' | |
| response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True) | |
| print(f'User: {question}\nAssistant: {response}') | |
| question = 'Can you tell me a story?' | |
| response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True) | |
| print(f'User: {question}\nAssistant: {response}') | |
| # single-image single-round conversation (单图单轮对话) | |
| question = '<image>\nPlease describe the image shortly.' | |
| response = model.chat(tokenizer, pixel_values, question, generation_config) | |
| print(f'User: {question}\nAssistant: {response}') | |
| # single-image multi-round conversation (单图多轮对话) | |
| question = '<image>\nPlease describe the image in detail.' | |
| response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) | |
| print(f'User: {question}\nAssistant: {response}') | |
| question = 'Please write a poem according to the image.' | |
| response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) | |
| print(f'User: {question}\nAssistant: {response}') | |
| # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像) | |
| pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() | |
| pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda() | |
| pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) | |
| question = '<image>\nDescribe the two images in detail.' | |
| response, history = model.chat(tokenizer, pixel_values, question, generation_config, | |
| history=None, return_history=True) | |
| print(f'User: {question}\nAssistant: {response}') | |
| question = 'What are the similarities and differences between these two images.' | |
| response, history = model.chat(tokenizer, pixel_values, question, generation_config, | |
| history=history, return_history=True) | |
| print(f'User: {question}\nAssistant: {response}') | |
| # multi-image multi-round conversation, separate images (多图多轮对话,独立图像) | |
| pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() | |
| pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda() | |
| pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) | |
| num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] | |
| question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.' | |
| response, history = model.chat(tokenizer, pixel_values, question, generation_config, | |
| num_patches_list=num_patches_list, | |
| history=None, return_history=True) | |
| print(f'User: {question}\nAssistant: {response}') | |
| question = 'What are the similarities and differences between these two images.' | |
| response, history = model.chat(tokenizer, pixel_values, question, generation_config, | |
| num_patches_list=num_patches_list, | |
| history=history, return_history=True) | |
| print(f'User: {question}\nAssistant: {response}') | |
| # batch inference, single image per sample (单图批处理) | |
| pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() | |
| pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda() | |
| num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] | |
| pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) | |
| questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list) | |
| responses = model.batch_chat(tokenizer, pixel_values, | |
| num_patches_list=num_patches_list, | |
| questions=questions, | |
| generation_config=generation_config) | |
| for question, response in zip(questions, responses): | |
| print(f'User: {question}\nAssistant: {response}') | |
| # video multi-round conversation (视频多轮对话) | |
| def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): | |
| if bound: | |
| start, end = bound[0], bound[1] | |
| else: | |
| start, end = -100000, 100000 | |
| start_idx = max(first_idx, round(start * fps)) | |
| end_idx = min(round(end * fps), max_frame) | |
| seg_size = float(end_idx - start_idx) / num_segments | |
| frame_indices = np.array([ | |
| int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) | |
| for idx in range(num_segments) | |
| ]) | |
| return frame_indices | |
| def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32): | |
| vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) | |
| max_frame = len(vr) - 1 | |
| fps = float(vr.get_avg_fps()) | |
| pixel_values_list, num_patches_list = [], [] | |
| transform = build_transform(input_size=input_size) | |
| frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) | |
| for frame_index in frame_indices: | |
| img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB') | |
| img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
| pixel_values = [transform(tile) for tile in img] | |
| pixel_values = torch.stack(pixel_values) | |
| num_patches_list.append(pixel_values.shape[0]) | |
| pixel_values_list.append(pixel_values) | |
| pixel_values = torch.cat(pixel_values_list) | |
| return pixel_values, num_patches_list | |
| video_path = './examples/red-panda.mp4' | |
| pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1) | |
| pixel_values = pixel_values.to(torch.bfloat16).cuda() | |
| video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))]) | |
| question = video_prefix + 'What is the red panda doing?' | |
| # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question} | |
| response, history = model.chat(tokenizer, pixel_values, question, generation_config, | |
| num_patches_list=num_patches_list, history=None, return_history=True) | |
| print(f'User: {question}\nAssistant: {response}') | |
| question = 'Describe this video in detail.' | |
| response, history = model.chat(tokenizer, pixel_values, question, generation_config, | |
| num_patches_list=num_patches_list, history=history, return_history=True) | |
| print(f'User: {question}\nAssistant: {response}') | |