Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,9 @@ from PIL import Image
|
|
| 6 |
from torchvision.transforms.functional import InterpolationMode
|
| 7 |
from transformers import AutoModel, AutoTokenizer
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 10 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 11 |
|
|
@@ -38,22 +41,18 @@ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbna
|
|
| 38 |
orig_width, orig_height = image.size
|
| 39 |
aspect_ratio = orig_width / orig_height
|
| 40 |
|
| 41 |
-
# calculate the existing image aspect ratio
|
| 42 |
target_ratios = set(
|
| 43 |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
| 44 |
i * j <= max_num and i * j >= min_num)
|
| 45 |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 46 |
|
| 47 |
-
# find the closest aspect ratio to the target
|
| 48 |
target_aspect_ratio = find_closest_aspect_ratio(
|
| 49 |
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
| 50 |
|
| 51 |
-
# calculate the target width and height
|
| 52 |
target_width = image_size * target_aspect_ratio[0]
|
| 53 |
target_height = image_size * target_aspect_ratio[1]
|
| 54 |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 55 |
|
| 56 |
-
# resize the image
|
| 57 |
resized_img = image.resize((target_width, target_height))
|
| 58 |
processed_images = []
|
| 59 |
for i in range(blocks):
|
|
@@ -63,7 +62,6 @@ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbna
|
|
| 63 |
((i % (target_width // image_size)) + 1) * image_size,
|
| 64 |
((i // (target_width // image_size)) + 1) * image_size
|
| 65 |
)
|
| 66 |
-
# split the image
|
| 67 |
split_img = resized_img.crop(box)
|
| 68 |
processed_images.append(split_img)
|
| 69 |
assert len(processed_images) == blocks
|
|
@@ -77,108 +75,9 @@ def load_image(image_file, input_size=448, max_num=12):
|
|
| 77 |
transform = build_transform(input_size=input_size)
|
| 78 |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
| 79 |
pixel_values = [transform(image) for image in images]
|
| 80 |
-
pixel_values = torch.stack(pixel_values)
|
| 81 |
return pixel_values
|
| 82 |
|
| 83 |
-
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
|
| 84 |
-
path = 'OpenGVLab/InternVL2_5-1B'
|
| 85 |
-
model = AutoModel.from_pretrained(
|
| 86 |
-
path,
|
| 87 |
-
torch_dtype=torch.bfloat16,
|
| 88 |
-
low_cpu_mem_usage=True,
|
| 89 |
-
use_flash_attn=True,
|
| 90 |
-
trust_remote_code=True).eval().cuda()
|
| 91 |
-
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 92 |
-
|
| 93 |
-
# set the max number of tiles in `max_num`
|
| 94 |
-
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 95 |
-
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
| 96 |
-
|
| 97 |
-
# pure-text conversation (纯文本对话)
|
| 98 |
-
question = 'Hello, who are you?'
|
| 99 |
-
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
| 100 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 101 |
-
|
| 102 |
-
question = 'Can you tell me a story?'
|
| 103 |
-
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
| 104 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 105 |
-
|
| 106 |
-
# single-image single-round conversation (单图单轮对话)
|
| 107 |
-
question = '<image>\nPlease describe the image shortly.'
|
| 108 |
-
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
| 109 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 110 |
-
|
| 111 |
-
# single-image multi-round conversation (单图多轮对话)
|
| 112 |
-
question = '<image>\nPlease describe the image in detail.'
|
| 113 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
| 114 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 115 |
-
|
| 116 |
-
question = 'Please write a poem according to the image.'
|
| 117 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
| 118 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 119 |
-
|
| 120 |
-
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
| 121 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 122 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 123 |
-
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 124 |
-
|
| 125 |
-
question = '<image>\nDescribe the two images in detail.'
|
| 126 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 127 |
-
history=None, return_history=True)
|
| 128 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 129 |
-
|
| 130 |
-
question = 'What are the similarities and differences between these two images.'
|
| 131 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 132 |
-
history=history, return_history=True)
|
| 133 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 134 |
-
|
| 135 |
-
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
| 136 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 137 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 138 |
-
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 139 |
-
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
| 140 |
-
|
| 141 |
-
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
|
| 142 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 143 |
-
num_patches_list=num_patches_list,
|
| 144 |
-
history=None, return_history=True)
|
| 145 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 146 |
-
|
| 147 |
-
question = 'What are the similarities and differences between these two images.'
|
| 148 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 149 |
-
num_patches_list=num_patches_list,
|
| 150 |
-
history=history, return_history=True)
|
| 151 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 152 |
-
|
| 153 |
-
# batch inference, single image per sample (单图批处理)
|
| 154 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 155 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 156 |
-
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
| 157 |
-
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 158 |
-
|
| 159 |
-
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
|
| 160 |
-
responses = model.batch_chat(tokenizer, pixel_values,
|
| 161 |
-
num_patches_list=num_patches_list,
|
| 162 |
-
questions=questions,
|
| 163 |
-
generation_config=generation_config)
|
| 164 |
-
for question, response in zip(questions, responses):
|
| 165 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 166 |
-
|
| 167 |
-
# video multi-round conversation (视频多轮对话)
|
| 168 |
-
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
| 169 |
-
if bound:
|
| 170 |
-
start, end = bound[0], bound[1]
|
| 171 |
-
else:
|
| 172 |
-
start, end = -100000, 100000
|
| 173 |
-
start_idx = max(first_idx, round(start * fps))
|
| 174 |
-
end_idx = min(round(end * fps), max_frame)
|
| 175 |
-
seg_size = float(end_idx - start_idx) / num_segments
|
| 176 |
-
frame_indices = np.array([
|
| 177 |
-
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
|
| 178 |
-
for idx in range(num_segments)
|
| 179 |
-
])
|
| 180 |
-
return frame_indices
|
| 181 |
-
|
| 182 |
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
|
| 183 |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
| 184 |
max_frame = len(vr) - 1
|
|
@@ -197,17 +96,26 @@ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=3
|
|
| 197 |
pixel_values = torch.cat(pixel_values_list)
|
| 198 |
return pixel_values, num_patches_list
|
| 199 |
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from torchvision.transforms.functional import InterpolationMode
|
| 7 |
from transformers import AutoModel, AutoTokenizer
|
| 8 |
|
| 9 |
+
# Device Configuration
|
| 10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
|
| 12 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 13 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 14 |
|
|
|
|
| 41 |
orig_width, orig_height = image.size
|
| 42 |
aspect_ratio = orig_width / orig_height
|
| 43 |
|
|
|
|
| 44 |
target_ratios = set(
|
| 45 |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
| 46 |
i * j <= max_num and i * j >= min_num)
|
| 47 |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 48 |
|
|
|
|
| 49 |
target_aspect_ratio = find_closest_aspect_ratio(
|
| 50 |
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
| 51 |
|
|
|
|
| 52 |
target_width = image_size * target_aspect_ratio[0]
|
| 53 |
target_height = image_size * target_aspect_ratio[1]
|
| 54 |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 55 |
|
|
|
|
| 56 |
resized_img = image.resize((target_width, target_height))
|
| 57 |
processed_images = []
|
| 58 |
for i in range(blocks):
|
|
|
|
| 62 |
((i % (target_width // image_size)) + 1) * image_size,
|
| 63 |
((i // (target_width // image_size)) + 1) * image_size
|
| 64 |
)
|
|
|
|
| 65 |
split_img = resized_img.crop(box)
|
| 66 |
processed_images.append(split_img)
|
| 67 |
assert len(processed_images) == blocks
|
|
|
|
| 75 |
transform = build_transform(input_size=input_size)
|
| 76 |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
| 77 |
pixel_values = [transform(image) for image in images]
|
| 78 |
+
pixel_values = torch.stack(pixel_values).to(device)
|
| 79 |
return pixel_values
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
|
| 82 |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
| 83 |
max_frame = len(vr) - 1
|
|
|
|
| 96 |
pixel_values = torch.cat(pixel_values_list)
|
| 97 |
return pixel_values, num_patches_list
|
| 98 |
|
| 99 |
+
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
| 100 |
+
if bound:
|
| 101 |
+
start, end = bound[0], bound[1]
|
| 102 |
+
else:
|
| 103 |
+
start, end = -100000, 100000
|
| 104 |
+
start_idx = max(first_idx, round(start * fps))
|
| 105 |
+
end_idx = min(round(end * fps), max_frame)
|
| 106 |
+
seg_size = float(end_idx - start_idx) / num_segments
|
| 107 |
+
frame_indices = np.array([
|
| 108 |
+
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
|
| 109 |
+
for idx in range(num_segments)
|
| 110 |
+
])
|
| 111 |
+
return frame_indices
|
| 112 |
|
| 113 |
+
# Load Model
|
| 114 |
+
path = 'OpenGVLab/InternVL2_5-1B'
|
| 115 |
+
model = AutoModel.from_pretrained(
|
| 116 |
+
path,
|
| 117 |
+
low_cpu_mem_usage=True,
|
| 118 |
+
use_flash_attn=False,
|
| 119 |
+
trust_remote_code=True
|
| 120 |
+
).eval().to(device)
|
| 121 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|