Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,471 +2,349 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
import torchaudio
|
| 4 |
import numpy as np
|
| 5 |
-
from pathlib import Path
|
| 6 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
# Import the
|
| 9 |
from infer import DMOInference
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
model = DMOInference(
|
| 15 |
-
student_checkpoint_path=
|
| 16 |
-
duration_predictor_path=
|
| 17 |
device=device,
|
| 18 |
-
model_type=
|
| 19 |
-
tokenizer="pinyin",
|
| 20 |
-
dataset_name="Emilia_ZH_EN",
|
| 21 |
-
cuda_device_id=str(cuda_device_id)
|
| 22 |
)
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
except Exception as e:
|
| 25 |
-
return
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
def generate_speech(
|
| 28 |
-
model,
|
| 29 |
-
generation_mode,
|
| 30 |
prompt_audio,
|
| 31 |
prompt_text,
|
| 32 |
target_text,
|
| 33 |
-
|
| 34 |
-
duration_mode,
|
| 35 |
-
manual_duration,
|
| 36 |
-
dp_softmax_range,
|
| 37 |
-
dp_temperature,
|
| 38 |
-
# Teacher-student settings
|
| 39 |
-
teacher_steps,
|
| 40 |
-
teacher_stopping_time,
|
| 41 |
-
student_start_step,
|
| 42 |
# Advanced settings
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
tg_teacher_steps,
|
| 49 |
-
tg_student_steps
|
| 50 |
):
|
| 51 |
-
"""Generate speech
|
| 52 |
|
| 53 |
-
if model is None:
|
| 54 |
-
return None, "Please
|
| 55 |
|
| 56 |
if prompt_audio is None:
|
| 57 |
-
return None, "Please upload a reference audio!"
|
| 58 |
|
| 59 |
if not target_text:
|
| 60 |
-
return None, "Please enter
|
| 61 |
|
| 62 |
try:
|
| 63 |
-
|
| 64 |
-
prompt_text = prompt_text.strip() if prompt_text else None
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
if
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
# Generate
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
temperature=dp_temperature,
|
| 84 |
-
eta=eta,
|
| 85 |
-
cfg_strength=cfg_strength,
|
| 86 |
-
sway_coefficient=sway_coefficient,
|
| 87 |
-
verbose=True
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
elif generation_mode == "Teacher-Student Distillation":
|
| 91 |
-
# Full teacher-student distillation
|
| 92 |
-
generated_wave = model.generate(
|
| 93 |
-
gen_text=target_text,
|
| 94 |
-
audio_path=prompt_audio,
|
| 95 |
-
prompt_text=prompt_text,
|
| 96 |
-
teacher_steps=teacher_steps,
|
| 97 |
-
teacher_stopping_time=teacher_stopping_time,
|
| 98 |
-
student_start_step=student_start_step,
|
| 99 |
-
duration=duration,
|
| 100 |
-
dp_softmax_range=dp_softmax_range,
|
| 101 |
-
temperature=dp_temperature,
|
| 102 |
-
eta=eta,
|
| 103 |
-
cfg_strength=cfg_strength,
|
| 104 |
-
sway_coefficient=sway_coefficient,
|
| 105 |
-
verbose=True
|
| 106 |
-
)
|
| 107 |
-
|
| 108 |
-
elif generation_mode == "Teacher-Only":
|
| 109 |
-
# Teacher-only generation
|
| 110 |
-
generated_wave = model.generate_teacher_only(
|
| 111 |
-
gen_text=target_text,
|
| 112 |
-
audio_path=prompt_audio,
|
| 113 |
-
prompt_text=prompt_text,
|
| 114 |
-
teacher_steps=teacher_steps,
|
| 115 |
-
duration=duration,
|
| 116 |
-
eta=eta,
|
| 117 |
-
cfg_strength=cfg_strength,
|
| 118 |
-
sway_coefficient=sway_coefficient
|
| 119 |
-
)
|
| 120 |
-
|
| 121 |
-
elif generation_mode == "Teacher-Guided Sampling":
|
| 122 |
-
# Implement teacher-guided sampling
|
| 123 |
-
# This would require implementing the teacher-guided sampling algorithm
|
| 124 |
-
# For now, we'll use the regular generation with specific parameters
|
| 125 |
-
total_teacher_steps = tg_teacher_steps
|
| 126 |
-
|
| 127 |
-
generated_wave = model.generate(
|
| 128 |
-
gen_text=target_text,
|
| 129 |
-
audio_path=prompt_audio,
|
| 130 |
-
prompt_text=prompt_text,
|
| 131 |
-
teacher_steps=total_teacher_steps,
|
| 132 |
-
teacher_stopping_time=tg_switch_time,
|
| 133 |
-
student_start_step=1,
|
| 134 |
-
duration=duration,
|
| 135 |
-
dp_softmax_range=dp_softmax_range,
|
| 136 |
-
temperature=dp_temperature,
|
| 137 |
-
eta=eta,
|
| 138 |
-
cfg_strength=cfg_strength,
|
| 139 |
-
sway_coefficient=sway_coefficient,
|
| 140 |
-
verbose=True
|
| 141 |
-
)
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
| 145 |
output_path = tmp_file.name
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
generated_wave = torch.from_numpy(generated_wave)
|
| 150 |
|
| 151 |
-
if
|
| 152 |
-
|
| 153 |
|
| 154 |
-
torchaudio.save(output_path,
|
| 155 |
-
|
| 156 |
-
return output_path, "Speech generated successfully!"
|
| 157 |
-
|
| 158 |
-
except Exception as e:
|
| 159 |
-
return None, f"Error generating speech: {str(e)}"
|
| 160 |
-
|
| 161 |
-
def predict_duration_only(
|
| 162 |
-
model,
|
| 163 |
-
prompt_audio,
|
| 164 |
-
prompt_text,
|
| 165 |
-
target_text,
|
| 166 |
-
dp_softmax_range,
|
| 167 |
-
dp_temperature
|
| 168 |
-
):
|
| 169 |
-
"""Predict duration for the target text."""
|
| 170 |
-
if model is None:
|
| 171 |
-
return "Please initialize the model first!"
|
| 172 |
-
|
| 173 |
-
if prompt_audio is None:
|
| 174 |
-
return "Please upload a reference audio!"
|
| 175 |
-
|
| 176 |
-
if not target_text:
|
| 177 |
-
return "Please enter target text!"
|
| 178 |
-
|
| 179 |
-
try:
|
| 180 |
-
prompt_text = prompt_text.strip() if prompt_text else None
|
| 181 |
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
tar_text=target_text,
|
| 185 |
-
pmt_text=prompt_text,
|
| 186 |
-
dp_softmax_range=dp_softmax_range,
|
| 187 |
-
temperature=dp_temperature
|
| 188 |
-
)
|
| 189 |
|
| 190 |
-
return f"
|
| 191 |
|
| 192 |
except Exception as e:
|
| 193 |
-
return f"Error
|
| 194 |
|
| 195 |
# Create Gradio interface
|
| 196 |
-
with gr.Blocks(title="DMOSpeech 2
|
| 197 |
-
gr.Markdown("""
|
| 198 |
-
# DMOSpeech 2:
|
| 199 |
|
| 200 |
-
|
| 201 |
-
- **Direct metric optimization** for speaker similarity and intelligibility
|
| 202 |
-
- **RL-optimized duration prediction** for better speech quality
|
| 203 |
-
- **Teacher-guided sampling** for improved diversity
|
| 204 |
-
- **Efficient 4-step generation** while maintaining high quality
|
| 205 |
-
""")
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
|
| 210 |
-
with gr.
|
| 211 |
-
gr.
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
label="
|
| 215 |
-
|
|
|
|
| 216 |
)
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
with gr.Row():
|
| 223 |
-
model_type = gr.Dropdown(
|
| 224 |
-
choices=["F5TTS_Base", "E2TTS_Base"],
|
| 225 |
-
value="F5TTS_Base",
|
| 226 |
-
label="Model Type"
|
| 227 |
)
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
|
|
|
| 232 |
)
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
)
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
"
|
| 267 |
-
|
| 268 |
-
"Teacher-Only",
|
| 269 |
-
"Teacher-Guided Sampling"
|
| 270 |
-
],
|
| 271 |
-
value="Student-Only (4 steps)",
|
| 272 |
-
label="Generation Mode"
|
| 273 |
-
)
|
| 274 |
-
|
| 275 |
-
with gr.Column(scale=1):
|
| 276 |
-
gr.Markdown("### Duration Settings")
|
| 277 |
-
|
| 278 |
-
duration_mode = gr.Radio(
|
| 279 |
-
choices=["automatic", "manual"],
|
| 280 |
-
value="automatic",
|
| 281 |
-
label="Duration Mode"
|
| 282 |
-
)
|
| 283 |
-
|
| 284 |
-
manual_duration = gr.Slider(
|
| 285 |
-
minimum=100,
|
| 286 |
-
maximum=3000,
|
| 287 |
-
value=500,
|
| 288 |
-
step=10,
|
| 289 |
-
label="Manual Duration (frames)",
|
| 290 |
-
visible=False
|
| 291 |
-
)
|
| 292 |
-
|
| 293 |
-
dp_softmax_range = gr.Slider(
|
| 294 |
-
minimum=0.1,
|
| 295 |
-
maximum=1.0,
|
| 296 |
-
value=0.7,
|
| 297 |
-
step=0.1,
|
| 298 |
-
label="Duration Predictor Softmax Range"
|
| 299 |
-
)
|
| 300 |
|
| 301 |
-
|
| 302 |
minimum=0.0,
|
| 303 |
maximum=2.0,
|
| 304 |
value=0.0,
|
| 305 |
step=0.1,
|
| 306 |
-
label="Duration
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
predict_duration_btn = gr.Button("Predict Duration Only")
|
| 310 |
-
duration_output = gr.Textbox(label="Predicted Duration", interactive=False)
|
| 311 |
-
|
| 312 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 313 |
-
with gr.Tab("Teacher-Student Settings"):
|
| 314 |
-
teacher_steps = gr.Slider(
|
| 315 |
-
minimum=0,
|
| 316 |
-
maximum=32,
|
| 317 |
-
value=16,
|
| 318 |
-
step=1,
|
| 319 |
-
label="Teacher Steps"
|
| 320 |
-
)
|
| 321 |
-
|
| 322 |
-
teacher_stopping_time = gr.Slider(
|
| 323 |
-
minimum=0.0,
|
| 324 |
-
maximum=1.0,
|
| 325 |
-
value=0.07,
|
| 326 |
-
step=0.01,
|
| 327 |
-
label="Teacher Stopping Time"
|
| 328 |
-
)
|
| 329 |
-
|
| 330 |
-
student_start_step = gr.Slider(
|
| 331 |
-
minimum=1,
|
| 332 |
-
maximum=4,
|
| 333 |
-
value=1,
|
| 334 |
-
step=1,
|
| 335 |
-
label="Student Start Step"
|
| 336 |
-
)
|
| 337 |
-
|
| 338 |
-
with gr.Tab("Sampling Settings"):
|
| 339 |
-
eta = gr.Slider(
|
| 340 |
-
minimum=0.0,
|
| 341 |
-
maximum=1.0,
|
| 342 |
-
value=1.0,
|
| 343 |
-
step=0.1,
|
| 344 |
-
label="Eta (Stochasticity: 0=DDIM, 1=DDPM)"
|
| 345 |
-
)
|
| 346 |
-
|
| 347 |
-
cfg_strength = gr.Slider(
|
| 348 |
-
minimum=0.0,
|
| 349 |
-
maximum=5.0,
|
| 350 |
-
value=2.0,
|
| 351 |
-
step=0.1,
|
| 352 |
-
label="CFG Strength"
|
| 353 |
-
)
|
| 354 |
-
|
| 355 |
-
sway_coefficient = gr.Slider(
|
| 356 |
-
minimum=-2.0,
|
| 357 |
-
maximum=2.0,
|
| 358 |
-
value=-1.0,
|
| 359 |
-
step=0.1,
|
| 360 |
-
label="Sway Sampling Coefficient"
|
| 361 |
-
)
|
| 362 |
-
|
| 363 |
-
with gr.Tab("Teacher-Guided Settings"):
|
| 364 |
-
tg_switch_time = gr.Slider(
|
| 365 |
-
minimum=0.1,
|
| 366 |
-
maximum=0.5,
|
| 367 |
-
value=0.25,
|
| 368 |
-
step=0.05,
|
| 369 |
-
label="Switch Time (when to transition to student)"
|
| 370 |
-
)
|
| 371 |
-
|
| 372 |
-
tg_teacher_steps = gr.Slider(
|
| 373 |
-
minimum=6,
|
| 374 |
-
maximum=20,
|
| 375 |
-
value=14,
|
| 376 |
-
step=1,
|
| 377 |
-
label="Teacher Steps"
|
| 378 |
)
|
| 379 |
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
step=1,
|
| 385 |
-
label="Student Steps"
|
| 386 |
)
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
with gr.
|
| 391 |
-
|
| 392 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
### Usage Tips:
|
| 397 |
-
|
| 398 |
-
1. **Generation Modes:**
|
| 399 |
-
- **Student-Only (4 steps)**: Fastest, uses the distilled model with direct metric optimization
|
| 400 |
-
- **Teacher-Student Distillation**: Uses teacher guidance for initial steps
|
| 401 |
-
- **Teacher-Only**: Full quality but slower (32 steps)
|
| 402 |
-
- **Teacher-Guided Sampling**: Best balance of quality and diversity
|
| 403 |
-
|
| 404 |
-
2. **Duration Settings:**
|
| 405 |
-
- **Automatic**: Uses RL-optimized duration predictor
|
| 406 |
-
- **Manual**: Specify exact duration in frames (100 frames ≈ 1 second)
|
| 407 |
-
|
| 408 |
-
3. **Advanced Parameters:**
|
| 409 |
-
- **Eta**: Controls sampling stochasticity (0 = deterministic, 1 = fully stochastic)
|
| 410 |
-
- **CFG Strength**: Higher values = stronger adherence to text
|
| 411 |
-
- **Sway Coefficient**: Negative values focus on early denoising steps
|
| 412 |
-
|
| 413 |
-
### Key Features:
|
| 414 |
-
- ✅ 5× faster than teacher model
|
| 415 |
-
- ✅ Better WER and speaker similarity
|
| 416 |
-
- ✅ RL-optimized duration prediction
|
| 417 |
-
- ✅ Maintains prosodic diversity with teacher-guided sampling
|
| 418 |
-
""")
|
| 419 |
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
)
|
| 432 |
|
| 433 |
-
|
|
|
|
| 434 |
generate_speech,
|
| 435 |
inputs=[
|
| 436 |
-
model_state,
|
| 437 |
-
generation_mode,
|
| 438 |
prompt_audio,
|
| 439 |
prompt_text,
|
| 440 |
target_text,
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
student_start_step,
|
| 448 |
-
eta,
|
| 449 |
-
cfg_strength,
|
| 450 |
-
sway_coefficient,
|
| 451 |
-
tg_switch_time,
|
| 452 |
-
tg_teacher_steps,
|
| 453 |
-
tg_student_steps
|
| 454 |
],
|
| 455 |
-
outputs=[output_audio,
|
| 456 |
)
|
| 457 |
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
dp_temperature
|
| 467 |
-
],
|
| 468 |
-
outputs=[duration_output]
|
| 469 |
)
|
| 470 |
|
|
|
|
| 471 |
if __name__ == "__main__":
|
| 472 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import torchaudio
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
import tempfile
|
| 6 |
+
import time
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
import os
|
| 10 |
|
| 11 |
+
# Import the inference module (assuming it's named 'infer.py' based on the notebook)
|
| 12 |
from infer import DMOInference
|
| 13 |
|
| 14 |
+
# Global model instance
|
| 15 |
+
model = None
|
| 16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
|
| 18 |
+
def download_models():
|
| 19 |
+
"""Download models from HuggingFace Hub."""
|
| 20 |
+
try:
|
| 21 |
+
print("Downloading models from HuggingFace...")
|
| 22 |
+
|
| 23 |
+
# Download student model
|
| 24 |
+
student_path = hf_hub_download(
|
| 25 |
+
repo_id="yl4579/DMOSpeech2",
|
| 26 |
+
filename="model_85000.pt",
|
| 27 |
+
cache_dir="./models"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Download duration predictor
|
| 31 |
+
duration_path = hf_hub_download(
|
| 32 |
+
repo_id="yl4579/DMOSpeech2",
|
| 33 |
+
filename="model_1500.pt",
|
| 34 |
+
cache_dir="./models"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
print(f"Student model: {student_path}")
|
| 38 |
+
print(f"Duration model: {duration_path}")
|
| 39 |
+
|
| 40 |
+
return student_path, duration_path
|
| 41 |
+
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Error downloading models: {e}")
|
| 44 |
+
return None, None
|
| 45 |
+
|
| 46 |
+
def initialize_model():
|
| 47 |
+
"""Initialize the model on startup."""
|
| 48 |
+
global model
|
| 49 |
+
|
| 50 |
try:
|
| 51 |
+
# Download models
|
| 52 |
+
student_path, duration_path = download_models()
|
| 53 |
+
|
| 54 |
+
if not student_path or not duration_path:
|
| 55 |
+
return False, "Failed to download models from HuggingFace"
|
| 56 |
+
|
| 57 |
+
# Initialize model
|
| 58 |
model = DMOInference(
|
| 59 |
+
student_checkpoint_path=student_path,
|
| 60 |
+
duration_predictor_path=duration_path,
|
| 61 |
device=device,
|
| 62 |
+
model_type="F5TTS_Base"
|
|
|
|
|
|
|
|
|
|
| 63 |
)
|
| 64 |
+
|
| 65 |
+
return True, f"Model loaded successfully on {device.upper()}"
|
| 66 |
+
|
| 67 |
except Exception as e:
|
| 68 |
+
return False, f"Error initializing model: {str(e)}"
|
| 69 |
+
|
| 70 |
+
# Initialize model on startup
|
| 71 |
+
model_loaded, status_message = initialize_model()
|
| 72 |
|
| 73 |
def generate_speech(
|
|
|
|
|
|
|
| 74 |
prompt_audio,
|
| 75 |
prompt_text,
|
| 76 |
target_text,
|
| 77 |
+
mode,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
# Advanced settings
|
| 79 |
+
custom_teacher_steps,
|
| 80 |
+
custom_teacher_stopping_time,
|
| 81 |
+
custom_student_start_step,
|
| 82 |
+
temperature,
|
| 83 |
+
verbose
|
|
|
|
|
|
|
| 84 |
):
|
| 85 |
+
"""Generate speech with different configurations."""
|
| 86 |
|
| 87 |
+
if not model_loaded or model is None:
|
| 88 |
+
return None, "Model not loaded! Please refresh the page.", "", ""
|
| 89 |
|
| 90 |
if prompt_audio is None:
|
| 91 |
+
return None, "Please upload a reference audio!", "", ""
|
| 92 |
|
| 93 |
if not target_text:
|
| 94 |
+
return None, "Please enter text to generate!", "", ""
|
| 95 |
|
| 96 |
try:
|
| 97 |
+
start_time = time.time()
|
|
|
|
| 98 |
|
| 99 |
+
# Configure parameters based on mode
|
| 100 |
+
if mode == "Student Only (4 steps)":
|
| 101 |
+
teacher_steps = 0
|
| 102 |
+
student_start_step = 0
|
| 103 |
+
teacher_stopping_time = 1.0
|
| 104 |
+
elif mode == "Teacher-Guided (8 steps)":
|
| 105 |
+
# Default configuration from the notebook
|
| 106 |
+
teacher_steps = 16
|
| 107 |
+
teacher_stopping_time = 0.07
|
| 108 |
+
student_start_step = 1
|
| 109 |
+
elif mode == "High Diversity (16 steps)":
|
| 110 |
+
teacher_steps = 24
|
| 111 |
+
teacher_stopping_time = 0.3
|
| 112 |
+
student_start_step = 2
|
| 113 |
+
else: # Custom
|
| 114 |
+
teacher_steps = custom_teacher_steps
|
| 115 |
+
teacher_stopping_time = custom_teacher_stopping_time
|
| 116 |
+
student_start_step = custom_student_start_step
|
| 117 |
|
| 118 |
+
# Generate speech
|
| 119 |
+
generated_audio = model.generate(
|
| 120 |
+
gen_text=target_text,
|
| 121 |
+
audio_path=prompt_audio,
|
| 122 |
+
prompt_text=prompt_text if prompt_text else None,
|
| 123 |
+
teacher_steps=teacher_steps,
|
| 124 |
+
teacher_stopping_time=teacher_stopping_time,
|
| 125 |
+
student_start_step=student_start_step,
|
| 126 |
+
temperature=temperature,
|
| 127 |
+
verbose=verbose
|
| 128 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
end_time = time.time()
|
| 131 |
+
|
| 132 |
+
# Calculate metrics
|
| 133 |
+
processing_time = end_time - start_time
|
| 134 |
+
audio_duration = generated_audio.shape[-1] / 24000
|
| 135 |
+
rtf = processing_time / audio_duration
|
| 136 |
+
|
| 137 |
+
# Save audio
|
| 138 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
| 139 |
output_path = tmp_file.name
|
| 140 |
|
| 141 |
+
if isinstance(generated_audio, np.ndarray):
|
| 142 |
+
generated_audio = torch.from_numpy(generated_audio)
|
|
|
|
| 143 |
|
| 144 |
+
if generated_audio.dim() == 1:
|
| 145 |
+
generated_audio = generated_audio.unsqueeze(0)
|
| 146 |
|
| 147 |
+
torchaudio.save(output_path, generated_audio, 24000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
+
# Format metrics
|
| 150 |
+
metrics = f"RTF: {rtf:.2f}x ({1/rtf:.2f}x speed) | Processing: {processing_time:.2f}s for {audio_duration:.2f}s audio"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
return output_path, "Success!", metrics, f"Mode: {mode}"
|
| 153 |
|
| 154 |
except Exception as e:
|
| 155 |
+
return None, f"Error: {str(e)}", "", ""
|
| 156 |
|
| 157 |
# Create Gradio interface
|
| 158 |
+
with gr.Blocks(title="DMOSpeech 2 - Zero-Shot TTS", theme=gr.themes.Soft()) as demo:
|
| 159 |
+
gr.Markdown(f"""
|
| 160 |
+
# 🎙️ DMOSpeech 2: Zero-Shot Text-to-Speech
|
| 161 |
|
| 162 |
+
Generate natural speech in any voice with just a short reference audio!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
+
**Model Status:** {status_message} | **Device:** {device.upper()}
|
| 165 |
+
""")
|
| 166 |
|
| 167 |
+
with gr.Row():
|
| 168 |
+
with gr.Column(scale=1):
|
| 169 |
+
# Reference audio input
|
| 170 |
+
prompt_audio = gr.Audio(
|
| 171 |
+
label="📎 Reference Audio",
|
| 172 |
+
type="filepath",
|
| 173 |
+
sources=["upload", "microphone"]
|
| 174 |
)
|
| 175 |
+
|
| 176 |
+
prompt_text = gr.Textbox(
|
| 177 |
+
label="📝 Reference Text (optional - will auto-transcribe if empty)",
|
| 178 |
+
placeholder="The text spoken in the reference audio...",
|
| 179 |
+
lines=2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
)
|
| 181 |
+
|
| 182 |
+
target_text = gr.Textbox(
|
| 183 |
+
label="✍️ Text to Generate",
|
| 184 |
+
placeholder="Enter the text you want to synthesize...",
|
| 185 |
+
lines=4
|
| 186 |
)
|
| 187 |
+
|
| 188 |
+
# Generation mode
|
| 189 |
+
mode = gr.Radio(
|
| 190 |
+
choices=[
|
| 191 |
+
"Student Only (4 steps)",
|
| 192 |
+
"Teacher-Guided (8 steps)",
|
| 193 |
+
"High Diversity (16 steps)",
|
| 194 |
+
"Custom"
|
| 195 |
+
],
|
| 196 |
+
value="Teacher-Guided (8 steps)",
|
| 197 |
+
label="🚀 Generation Mode",
|
| 198 |
+
info="Choose speed vs quality/diversity tradeoff"
|
| 199 |
)
|
| 200 |
+
|
| 201 |
+
# Advanced settings (collapsible)
|
| 202 |
+
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
| 203 |
+
with gr.Row():
|
| 204 |
+
custom_teacher_steps = gr.Slider(
|
| 205 |
+
minimum=0,
|
| 206 |
+
maximum=32,
|
| 207 |
+
value=16,
|
| 208 |
+
step=1,
|
| 209 |
+
label="Teacher Steps",
|
| 210 |
+
info="More steps = higher quality"
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
custom_teacher_stopping_time = gr.Slider(
|
| 214 |
+
minimum=0.0,
|
| 215 |
+
maximum=1.0,
|
| 216 |
+
value=0.07,
|
| 217 |
+
step=0.01,
|
| 218 |
+
label="Teacher Stopping Time",
|
| 219 |
+
info="When to switch to student"
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
custom_student_start_step = gr.Slider(
|
| 223 |
+
minimum=0,
|
| 224 |
+
maximum=4,
|
| 225 |
+
value=1,
|
| 226 |
+
step=1,
|
| 227 |
+
label="Student Start Step",
|
| 228 |
+
info="Which student step to start from"
|
| 229 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
+
temperature = gr.Slider(
|
| 232 |
minimum=0.0,
|
| 233 |
maximum=2.0,
|
| 234 |
value=0.0,
|
| 235 |
step=0.1,
|
| 236 |
+
label="Duration Temperature",
|
| 237 |
+
info="0 = deterministic, >0 = more variation in speech rhythm"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
)
|
| 239 |
|
| 240 |
+
verbose = gr.Checkbox(
|
| 241 |
+
value=False,
|
| 242 |
+
label="Verbose Output",
|
| 243 |
+
info="Show detailed generation steps"
|
|
|
|
|
|
|
| 244 |
)
|
| 245 |
+
|
| 246 |
+
generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg")
|
| 247 |
+
|
| 248 |
+
with gr.Column(scale=1):
|
| 249 |
+
# Output
|
| 250 |
+
output_audio = gr.Audio(
|
| 251 |
+
label="🔊 Generated Speech",
|
| 252 |
+
type="filepath",
|
| 253 |
+
autoplay=True
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
status = gr.Textbox(
|
| 257 |
+
label="Status",
|
| 258 |
+
interactive=False
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
metrics = gr.Textbox(
|
| 262 |
+
label="Performance Metrics",
|
| 263 |
+
interactive=False
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
info = gr.Textbox(
|
| 267 |
+
label="Generation Info",
|
| 268 |
+
interactive=False
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
# Tips
|
| 272 |
+
gr.Markdown("""
|
| 273 |
+
### 💡 Quick Tips:
|
| 274 |
+
|
| 275 |
+
- **Student Only**: Fastest (4 steps), good quality
|
| 276 |
+
- **Teacher-Guided**: Best balance (8 steps), recommended
|
| 277 |
+
- **High Diversity**: More natural prosody (16 steps)
|
| 278 |
+
- **Temperature**: Add randomness to speech rhythm
|
| 279 |
+
|
| 280 |
+
### 📊 Expected RTF (Real-Time Factor):
|
| 281 |
+
- Student Only: ~0.05x (20x faster than real-time)
|
| 282 |
+
- Teacher-Guided: ~0.10x (10x faster)
|
| 283 |
+
- High Diversity: ~0.20x (5x faster)
|
| 284 |
+
""")
|
| 285 |
|
| 286 |
+
# Examples section
|
| 287 |
+
gr.Markdown("### 🎯 Examples")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
+
examples = [
|
| 290 |
+
[
|
| 291 |
+
None, # Will be replaced with actual audio path
|
| 292 |
+
"Some call me nature, others call me mother nature.",
|
| 293 |
+
"I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring.",
|
| 294 |
+
"Teacher-Guided (8 steps)",
|
| 295 |
+
16, 0.07, 1, 0.0, False
|
| 296 |
+
],
|
| 297 |
+
[
|
| 298 |
+
None, # Will be replaced with actual audio path
|
| 299 |
+
"对,这就是我,万人敬仰的太乙真人。",
|
| 300 |
+
'突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"',
|
| 301 |
+
"Teacher-Guided (8 steps)",
|
| 302 |
+
16, 0.07, 1, 0.0, False
|
| 303 |
+
],
|
| 304 |
+
[
|
| 305 |
+
None,
|
| 306 |
+
"对,这就是我,万人敬仰的太乙真人。",
|
| 307 |
+
'突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"',
|
| 308 |
+
"High Diversity (16 steps)",
|
| 309 |
+
24, 0.3, 2, 0.8, False
|
| 310 |
+
]
|
| 311 |
+
]
|
| 312 |
|
| 313 |
+
# Note about example audio files
|
| 314 |
+
gr.Markdown("""
|
| 315 |
+
*Note: Example audio files should be uploaded to the Space. The examples above show the text configurations used in the original notebook.*
|
| 316 |
+
""")
|
|
|
|
| 317 |
|
| 318 |
+
# Event handler
|
| 319 |
+
generate_btn.click(
|
| 320 |
generate_speech,
|
| 321 |
inputs=[
|
|
|
|
|
|
|
| 322 |
prompt_audio,
|
| 323 |
prompt_text,
|
| 324 |
target_text,
|
| 325 |
+
mode,
|
| 326 |
+
custom_teacher_steps,
|
| 327 |
+
custom_teacher_stopping_time,
|
| 328 |
+
custom_student_start_step,
|
| 329 |
+
temperature,
|
| 330 |
+
verbose
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
],
|
| 332 |
+
outputs=[output_audio, status, metrics, info]
|
| 333 |
)
|
| 334 |
|
| 335 |
+
# Update visibility of custom settings based on mode
|
| 336 |
+
def update_custom_visibility(mode):
|
| 337 |
+
return gr.update(visible=(mode == "Custom"))
|
| 338 |
+
|
| 339 |
+
mode.change(
|
| 340 |
+
lambda x: [gr.update(interactive=(x == "Custom"))] * 3,
|
| 341 |
+
inputs=[mode],
|
| 342 |
+
outputs=[custom_teacher_steps, custom_teacher_stopping_time, custom_student_start_step]
|
|
|
|
|
|
|
|
|
|
| 343 |
)
|
| 344 |
|
| 345 |
+
# Launch the app
|
| 346 |
if __name__ == "__main__":
|
| 347 |
+
if not model_loaded:
|
| 348 |
+
print(f"Warning: Model failed to load - {status_message}")
|
| 349 |
+
|
| 350 |
+
demo.launch()
|