yogesh69 commited on
Commit
8187f33
·
verified ·
1 Parent(s): bf91940

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -34
app.py CHANGED
@@ -1,12 +1,13 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
@@ -15,50 +16,45 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
+ # Load DeepSeek-R1 model and tokenizer
5
+ MODEL_NAME = "deepseek-ai/DeepSeek-R1"
 
 
6
 
7
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
8
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True)
9
 
10
+ # Function to handle chat interactions
11
  def respond(
12
  message,
13
  history: list[tuple[str, str]],
 
16
  temperature,
17
  top_p,
18
  ):
19
+ # Construct messages format
20
  messages = [{"role": "system", "content": system_message}]
21
+
22
+ for user_input, bot_response in history:
23
+ if user_input:
24
+ messages.append({"role": "user", "content": user_input})
25
+ if bot_response:
26
+ messages.append({"role": "assistant", "content": bot_response})
27
 
28
  messages.append({"role": "user", "content": message})
29
 
30
+ # Tokenize input
31
+ input_text = "\n".join([msg["content"] for msg in messages])
32
+ inputs = tokenizer(input_text, return_tensors="pt")
33
 
34
+ # Generate response
35
+ output = model.generate(
36
+ **inputs,
37
+ max_length=max_tokens,
38
  temperature=temperature,
39
  top_p=top_p,
40
+ do_sample=True
41
+ )
42
 
43
+ response_text = tokenizer.decode(output[0], skip_special_tokens=True)
 
44
 
45
+ return response_text
46
 
47
+ # Gradio Chat Interface
 
 
48
  demo = gr.ChatInterface(
49
  respond,
50
  additional_inputs=[
51
+ gr.Textbox(value="You are a helpful AI assistant.", label="System Message"),
52
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
53
+ gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
54
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
 
 
 
 
 
 
55
  ],
56
  )
57
 
58
+ # Launch the Gradio app
59
  if __name__ == "__main__":
60
  demo.launch()