Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
| 9 |
|
|
|
|
| 10 |
def respond(
|
| 11 |
message,
|
| 12 |
history: list[tuple[str, str]],
|
|
@@ -15,50 +16,45 @@ def respond(
|
|
| 15 |
temperature,
|
| 16 |
top_p,
|
| 17 |
):
|
|
|
|
| 18 |
messages = [{"role": "system", "content": system_message}]
|
| 19 |
-
|
| 20 |
-
for
|
| 21 |
-
if
|
| 22 |
-
messages.append({"role": "user", "content":
|
| 23 |
-
if
|
| 24 |
-
messages.append({"role": "assistant", "content":
|
| 25 |
|
| 26 |
messages.append({"role": "user", "content": message})
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
temperature=temperature,
|
| 35 |
top_p=top_p,
|
| 36 |
-
|
| 37 |
-
|
| 38 |
|
| 39 |
-
|
| 40 |
-
yield response
|
| 41 |
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
demo = gr.ChatInterface(
|
| 47 |
respond,
|
| 48 |
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
],
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
if __name__ == "__main__":
|
| 64 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
|
| 4 |
+
# Load DeepSeek-R1 model and tokenizer
|
| 5 |
+
MODEL_NAME = "deepseek-ai/DeepSeek-R1"
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 9 |
|
| 10 |
+
# Function to handle chat interactions
|
| 11 |
def respond(
|
| 12 |
message,
|
| 13 |
history: list[tuple[str, str]],
|
|
|
|
| 16 |
temperature,
|
| 17 |
top_p,
|
| 18 |
):
|
| 19 |
+
# Construct messages format
|
| 20 |
messages = [{"role": "system", "content": system_message}]
|
| 21 |
+
|
| 22 |
+
for user_input, bot_response in history:
|
| 23 |
+
if user_input:
|
| 24 |
+
messages.append({"role": "user", "content": user_input})
|
| 25 |
+
if bot_response:
|
| 26 |
+
messages.append({"role": "assistant", "content": bot_response})
|
| 27 |
|
| 28 |
messages.append({"role": "user", "content": message})
|
| 29 |
|
| 30 |
+
# Tokenize input
|
| 31 |
+
input_text = "\n".join([msg["content"] for msg in messages])
|
| 32 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 33 |
|
| 34 |
+
# Generate response
|
| 35 |
+
output = model.generate(
|
| 36 |
+
**inputs,
|
| 37 |
+
max_length=max_tokens,
|
| 38 |
temperature=temperature,
|
| 39 |
top_p=top_p,
|
| 40 |
+
do_sample=True
|
| 41 |
+
)
|
| 42 |
|
| 43 |
+
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
| 44 |
|
| 45 |
+
return response_text
|
| 46 |
|
| 47 |
+
# Gradio Chat Interface
|
|
|
|
|
|
|
| 48 |
demo = gr.ChatInterface(
|
| 49 |
respond,
|
| 50 |
additional_inputs=[
|
| 51 |
+
gr.Textbox(value="You are a helpful AI assistant.", label="System Message"),
|
| 52 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
|
| 53 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
| 54 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
],
|
| 56 |
)
|
| 57 |
|
| 58 |
+
# Launch the Gradio app
|
| 59 |
if __name__ == "__main__":
|
| 60 |
demo.launch()
|