Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from langchain.prompts import PromptTemplate
|
| 4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 5 |
+
from langchain_community.vectorstores import FAISS
|
| 6 |
+
from langchain_community.llms import CTransformers
|
| 7 |
+
from langchain.chains import RetrievalQA
|
| 8 |
+
|
| 9 |
+
DB_FAISS_PATH = 'vectorstore/db_faiss'
|
| 10 |
+
|
| 11 |
+
custom_prompt_template = """
|
| 12 |
+
Use the following pieces of information to answer the user's question.
|
| 13 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
| 14 |
+
|
| 15 |
+
Context: {context}
|
| 16 |
+
Question: {question}
|
| 17 |
+
|
| 18 |
+
Only return the helpful answer below and nothing else.
|
| 19 |
+
Helpful answer:
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
app = FastAPI()
|
| 23 |
+
|
| 24 |
+
class Query(BaseModel):
|
| 25 |
+
question: str
|
| 26 |
+
|
| 27 |
+
class Response(BaseModel):
|
| 28 |
+
result: str
|
| 29 |
+
source_documents: list[str] = []
|
| 30 |
+
|
| 31 |
+
def set_custom_prompt():
|
| 32 |
+
""" Prompt template for QA retrieval for each vectorstore """
|
| 33 |
+
prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context', 'question'])
|
| 34 |
+
return prompt
|
| 35 |
+
|
| 36 |
+
def retrieval_qa_chain(llm, prompt, db):
|
| 37 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 38 |
+
llm=llm,
|
| 39 |
+
chain_type='stuff',
|
| 40 |
+
retriever=db.as_retriever(search_kwargs={'k': 2}),
|
| 41 |
+
return_source_documents=True,
|
| 42 |
+
chain_type_kwargs={'prompt': prompt}
|
| 43 |
+
)
|
| 44 |
+
return qa_chain
|
| 45 |
+
|
| 46 |
+
def load_llm():
|
| 47 |
+
""" Load the locally downloaded model """
|
| 48 |
+
llm = CTransformers(
|
| 49 |
+
model="TheBloke/Llama-2-7B-Chat-GGML",
|
| 50 |
+
model_type="llama",
|
| 51 |
+
max_new_tokens=512,
|
| 52 |
+
temperature=0.5
|
| 53 |
+
)
|
| 54 |
+
return llm
|
| 55 |
+
|
| 56 |
+
def qa_bot():
|
| 57 |
+
try:
|
| 58 |
+
print("Loading embeddings...")
|
| 59 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 60 |
+
model_kwargs={'device': 'cpu'})
|
| 61 |
+
print("Loading FAISS database...")
|
| 62 |
+
db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
|
| 63 |
+
print("Loading LLM...")
|
| 64 |
+
llm = load_llm()
|
| 65 |
+
print("Setting up QA chain...")
|
| 66 |
+
qa_prompt = set_custom_prompt()
|
| 67 |
+
qa = retrieval_qa_chain(llm, qa_prompt, db)
|
| 68 |
+
print("QA chain setup complete.")
|
| 69 |
+
return qa
|
| 70 |
+
except Exception as e:
|
| 71 |
+
print(f"Error loading vector database: {e}")
|
| 72 |
+
return None
|
| 73 |
+
|
| 74 |
+
@app.post("/ask/")
|
| 75 |
+
async def ask(query: Query):
|
| 76 |
+
print("Request received.")
|
| 77 |
+
if not query.question:
|
| 78 |
+
print("No question provided.")
|
| 79 |
+
raise HTTPException(status_code=400, detail="Question is required")
|
| 80 |
+
print(f"Question received: {query.question}")
|
| 81 |
+
qa_result = qa_bot()
|
| 82 |
+
if qa_result is None:
|
| 83 |
+
print("Error loading vector database.")
|
| 84 |
+
raise HTTPException(status_code=500, detail="Error loading vector database.")
|
| 85 |
+
print("Processing question...")
|
| 86 |
+
response = qa_result({'query': query.question})
|
| 87 |
+
print("Question processed.")
|
| 88 |
+
|
| 89 |
+
# Extract metadata
|
| 90 |
+
source_documents = []
|
| 91 |
+
for doc in response['source_documents']:
|
| 92 |
+
source = doc.metadata.get('source', 'Unknown Document')
|
| 93 |
+
page = doc.metadata.get('page', 'N/A')
|
| 94 |
+
source_documents.append(f"{source} (Page {page})")
|
| 95 |
+
print(f"Document metadata: {doc.metadata}")
|
| 96 |
+
|
| 97 |
+
print("Response generated.")
|
| 98 |
+
result_response = Response(result=response['result'], source_documents=source_documents)
|
| 99 |
+
print(f"Returning response: {result_response}")
|
| 100 |
+
|
| 101 |
+
return result_response
|
| 102 |
+
|
| 103 |
+
if __name__ == "__main__":
|
| 104 |
+
import uvicorn
|
| 105 |
+
|
| 106 |
+
print("Starting server...")
|
| 107 |
+
uvicorn.run(app, host="127.0.0.1", port=8000)
|