Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,24 @@
|
|
| 1 |
from transformers import AutoFeatureExtractor, ResNetForImageClassification
|
| 2 |
import torch
|
| 3 |
-
from datasets import load_dataset
|
| 4 |
|
| 5 |
-
dataset = load_dataset("huggingface/cats-image")
|
| 6 |
-
image = dataset["test"]["image"][0]
|
| 7 |
|
| 8 |
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
|
| 9 |
model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50")
|
| 10 |
|
| 11 |
-
inputs = feature_extractor(image, return_tensors="pt")
|
| 12 |
-
|
| 13 |
-
with torch.no_grad():
|
| 14 |
-
logits = model(**inputs).logits
|
| 15 |
-
|
| 16 |
-
# model predicts one of the 1000 ImageNet classes
|
| 17 |
-
predicted_label = logits.argmax(-1).item()
|
| 18 |
-
print(model.config.id2label[predicted_label])
|
| 19 |
-
|
| 20 |
import gradio as gr
|
| 21 |
def segment(image):
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
gr.Interface(fn=segment, inputs="image", outputs="
|
|
|
|
| 1 |
from transformers import AutoFeatureExtractor, ResNetForImageClassification
|
| 2 |
import torch
|
| 3 |
+
# from datasets import load_dataset
|
| 4 |
|
| 5 |
+
# dataset = load_dataset("huggingface/cats-image")
|
| 6 |
+
# image = dataset["test"]["image"][0]
|
| 7 |
|
| 8 |
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
|
| 9 |
model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50")
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
import gradio as gr
|
| 12 |
def segment(image):
|
| 13 |
+
inputs = feature_extractor(image, return_tensors="pt")
|
| 14 |
+
|
| 15 |
+
with torch.no_grad():
|
| 16 |
+
logits = model(**inputs).logits
|
| 17 |
+
|
| 18 |
+
# model predicts one of the 1000 ImageNet classes
|
| 19 |
+
predicted_label = logits.argmax(-1).item()
|
| 20 |
+
# print(model.config.id2label[predicted_label])
|
| 21 |
+
|
| 22 |
+
return model.config.id2label[predicted_label]
|
| 23 |
|
| 24 |
+
gr.Interface(fn=segment, inputs="image", outputs="label").launch()
|